Skip to content

vllm.usage.usage_lib

UsageMessage

Collect platform information and send it to the usage stats server.

Source code in vllm/usage/usage_lib.py
class UsageMessage:
    """Collect platform information and send it to the usage stats server."""

    def __init__(self) -> None:
        # NOTE: vLLM's server _only_ support flat KV pair.
        # Do not use nested fields.

        self.uuid = str(uuid4())

        # Environment Information
        self.provider: str | None = None
        self.num_cpu: int | None = None
        self.cpu_type: str | None = None
        self.cpu_family_model_stepping: str | None = None
        self.total_memory: int | None = None
        self.architecture: str | None = None
        self.platform: str | None = None
        self.cuda_runtime: str | None = None
        self.gpu_count: int | None = None
        self.gpu_type: str | None = None
        self.gpu_memory_per_device: int | None = None
        self.env_var_json: str | None = None

        # vLLM Information
        self.model_architecture: str | None = None
        self.vllm_version: str | None = None
        self.context: str | None = None

        # Metadata
        self.log_time: int | None = None
        self.source: str | None = None

    def report_usage(
        self,
        model_architecture: str,
        usage_context: UsageContext,
        extra_kvs: dict[str, Any] | None = None,
    ) -> None:
        t = Thread(
            target=self._report_usage_worker,
            args=(model_architecture, usage_context, extra_kvs or {}),
            daemon=True,
        )
        t.start()

    def _report_usage_worker(
        self,
        model_architecture: str,
        usage_context: UsageContext,
        extra_kvs: dict[str, Any],
    ) -> None:
        self._report_usage_once(model_architecture, usage_context, extra_kvs)
        self._report_continuous_usage()

    def _report_tpu_inference_usage(self) -> bool:
        try:
            from tpu_inference import tpu_info, utils

            self.gpu_count = tpu_info.get_num_chips()
            self.gpu_type = tpu_info.get_tpu_type()
            self.gpu_memory_per_device = utils.get_device_hbm_limit()
            self.cuda_runtime = "tpu_inference"
            return True
        except Exception:
            return False

    def _report_usage_once(
        self,
        model_architecture: str,
        usage_context: UsageContext,
        extra_kvs: dict[str, Any],
    ) -> None:
        # Platform information
        from vllm.platforms import current_platform

        if current_platform.is_cuda_alike():
            self.gpu_count = cuda_device_count_stateless()
            self.gpu_type, self.gpu_memory_per_device = cuda_get_device_properties(
                0, ("name", "total_memory")
            )
        if current_platform.is_cuda():
            self.cuda_runtime = torch.version.cuda
        if current_platform.is_tpu():  # noqa: SIM102
            if not self._report_tpu_inference_usage():
                logger.exception("Failed to collect TPU information")
        self.provider = _detect_cloud_provider()
        self.architecture = platform.machine()
        self.platform = platform.platform()
        self.total_memory = psutil.virtual_memory().total

        info = cpuinfo.get_cpu_info()
        self.num_cpu = info.get("count", None)
        self.cpu_type = info.get("brand_raw", "")
        self.cpu_family_model_stepping = ",".join(
            [
                str(info.get("family", "")),
                str(info.get("model", "")),
                str(info.get("stepping", "")),
            ]
        )

        # vLLM information
        self.context = usage_context.value
        self.vllm_version = VLLM_VERSION
        self.model_architecture = model_architecture

        # Environment variables
        self.env_var_json = json.dumps(
            {env_var: getattr(envs, env_var) for env_var in _USAGE_ENV_VARS_TO_COLLECT}
        )

        # Metadata
        self.log_time = _get_current_timestamp_ns()
        self.source = envs.VLLM_USAGE_SOURCE

        data = vars(self)
        if extra_kvs:
            data.update(extra_kvs)

        self._write_to_file(data)
        self._send_to_server(data)

    def _report_continuous_usage(self):
        """Report usage every 10 minutes.

        This helps us to collect more data points for uptime of vLLM usages.
        This function can also help send over performance metrics over time.
        """
        while True:
            time.sleep(600)
            data = {
                "uuid": self.uuid,
                "log_time": _get_current_timestamp_ns(),
            }
            data.update(_GLOBAL_RUNTIME_DATA)

            self._write_to_file(data)
            self._send_to_server(data)

    def _send_to_server(self, data: dict[str, Any]) -> None:
        try:
            global_http_client = global_http_connection.get_sync_client()
            global_http_client.post(_USAGE_STATS_SERVER, json=data)
        except requests.exceptions.RequestException:
            # silently ignore unless we are using debug log
            logging.debug("Failed to send usage data to server")

    def _write_to_file(self, data: dict[str, Any]) -> None:
        os.makedirs(os.path.dirname(_USAGE_STATS_JSON_PATH), exist_ok=True)
        Path(_USAGE_STATS_JSON_PATH).touch(exist_ok=True)
        with open(_USAGE_STATS_JSON_PATH, "a") as f:
            json.dump(data, f)
            f.write("\n")

_report_continuous_usage

_report_continuous_usage()

Report usage every 10 minutes.

This helps us to collect more data points for uptime of vLLM usages. This function can also help send over performance metrics over time.

Source code in vllm/usage/usage_lib.py
def _report_continuous_usage(self):
    """Report usage every 10 minutes.

    This helps us to collect more data points for uptime of vLLM usages.
    This function can also help send over performance metrics over time.
    """
    while True:
        time.sleep(600)
        data = {
            "uuid": self.uuid,
            "log_time": _get_current_timestamp_ns(),
        }
        data.update(_GLOBAL_RUNTIME_DATA)

        self._write_to_file(data)
        self._send_to_server(data)

is_usage_stats_enabled

is_usage_stats_enabled()

Determine whether or not we can send usage stats to the server. The logic is as follows: - By default, it should be enabled. - Three environment variables can disable it: - VLLM_DO_NOT_TRACK=1 - DO_NOT_TRACK=1 - VLLM_NO_USAGE_STATS=1 - A file in the home directory can disable it if it exists: - $HOME/.config/vllm/do_not_track

Source code in vllm/usage/usage_lib.py
def is_usage_stats_enabled():
    """Determine whether or not we can send usage stats to the server.
    The logic is as follows:
    - By default, it should be enabled.
    - Three environment variables can disable it:
        - VLLM_DO_NOT_TRACK=1
        - DO_NOT_TRACK=1
        - VLLM_NO_USAGE_STATS=1
    - A file in the home directory can disable it if it exists:
        - $HOME/.config/vllm/do_not_track
    """
    global _USAGE_STATS_ENABLED
    if _USAGE_STATS_ENABLED is None:
        do_not_track = envs.VLLM_DO_NOT_TRACK
        no_usage_stats = envs.VLLM_NO_USAGE_STATS
        do_not_track_file = os.path.exists(_USAGE_STATS_DO_NOT_TRACK_PATH)

        _USAGE_STATS_ENABLED = not (do_not_track or no_usage_stats or do_not_track_file)
    return _USAGE_STATS_ENABLED

set_runtime_usage_data

set_runtime_usage_data(
    key: str, value: str | int | bool
) -> None

Set global usage data that will be sent with every usage heartbeat.

Source code in vllm/usage/usage_lib.py
def set_runtime_usage_data(key: str, value: str | int | bool) -> None:
    """Set global usage data that will be sent with every usage heartbeat."""
    _GLOBAL_RUNTIME_DATA[key] = value