Skip to content

vllm.platforms.cuda

Code inside this file can safely assume cuda platform, e.g. importing pynvml. However, it should not initialize cuda context.

CudaPlatformBase

Bases: Platform

Source code in vllm/platforms/cuda.py
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
class CudaPlatformBase(Platform):
    _enum = PlatformEnum.CUDA
    device_name: str = "cuda"
    device_type: str = "cuda"
    dispatch_key: str = "CUDA"
    ray_device_key: str = "GPU"
    dist_backend: str = "nccl"
    device_control_env_var: str = "CUDA_VISIBLE_DEVICES"
    ray_noset_device_env_vars: list[str] = [
        "RAY_EXPERIMENTAL_NOSET_CUDA_VISIBLE_DEVICES",
    ]

    @property
    def supported_dtypes(self) -> list[torch.dtype]:
        if self.has_device_capability(80):
            # Ampere and Hopper or later NVIDIA GPUs.
            return [torch.bfloat16, torch.float16, torch.float32]
        if self.has_device_capability(60):
            # Pascal, Volta and Turing NVIDIA GPUs, BF16 is not supported
            return [torch.float16, torch.float32]
        # Kepler and Maxwell NVIDIA GPUs, only FP32 is supported,
        # though vLLM doesn't support these GPUs.
        return [torch.float32]

    @classmethod
    def set_device(cls, device: torch.device) -> None:
        """
        Set the device for the current platform.
        """
        torch.cuda.set_device(device)
        # With this trick we can force the device to be set eagerly
        # see https://github.com/pytorch/pytorch/issues/155668
        # for why and when it is needed
        _ = torch.zeros(1, device=device)

    @classmethod
    def get_device_capability(cls, device_id: int = 0) -> DeviceCapability | None:
        raise NotImplementedError

    @classmethod
    def get_device_name(cls, device_id: int = 0) -> str:
        raise NotImplementedError

    @classmethod
    def get_device_total_memory(cls, device_id: int = 0) -> int:
        raise NotImplementedError

    @classmethod
    def is_fully_connected(cls, device_ids: list[int]) -> bool:
        raise NotImplementedError

    @classmethod
    def log_warnings(cls):
        pass

    @classmethod
    def check_and_update_config(cls, vllm_config: "VllmConfig") -> None:
        from vllm.v1.attention.backends.registry import AttentionBackendEnum

        parallel_config = vllm_config.parallel_config
        model_config = vllm_config.model_config

        if parallel_config.worker_cls == "auto":
            parallel_config.worker_cls = "vllm.v1.worker.gpu_worker.Worker"

        cache_config = vllm_config.cache_config
        if cache_config and cache_config.block_size is None:
            cache_config.block_size = 16

        # TODO(lucas): handle this more gracefully
        # Note: model_config may be None during testing
        # Note: block_size is initialized in
        # HybridAttentionMambaModelConfig.verify_and_update_config
        # for models with both attention and mamba,
        # and doesn't need to be reinitialized here
        if (
            model_config is not None
            and model_config.use_mla
            and cache_config.block_size is not None
        ):
            use_sparse = hasattr(vllm_config.model_config.hf_config, "index_topk")
            # If `--attention-config.backend` is not set and we are using MLA,
            # then we default to FlashMLA backend for non-blackwell GPUs,
            # else we default to CutlassMLA. For each case, we force the
            # required block_size.
            use_flashmla = False
            use_cutlass_mla = False
            use_flashinfer_mla = False

            from vllm.v1.attention.ops.flashmla import is_flashmla_dense_supported

            if vllm_config.attention_config.backend is None:
                # Default case
                hf_text_config = model_config.hf_text_config
                qk_nope_head_dim = getattr(hf_text_config, "qk_nope_head_dim", 1)
                if (
                    cls.is_device_capability_family(100)
                    and not use_sparse
                    and qk_nope_head_dim == 128
                ):
                    # Blackwell => Force FlashInfer MLA (unless sparse, i.e. DSv3.2)
                    # and only if qk_nope_head_dim == 128 (kernel constraint)
                    use_flashinfer_mla = True
                    # Set the backend in AttentionConfig so it's used during
                    # backend selection
                    vllm_config.attention_config.backend = (
                        AttentionBackendEnum.FLASHINFER_MLA
                    )
                elif cls.is_device_capability_family(100) and not use_sparse:
                    # Fall back to CUTLASS_MLA as 2nd priority on Blackwell
                    use_cutlass_mla = True
                elif is_flashmla_dense_supported()[0]:
                    # Non-Blackwell with FlashMLA support
                    use_flashmla = True
                else:
                    # Fallback: will use Triton MLA or other compatible backend
                    pass
            else:
                # Forced case
                backend = vllm_config.attention_config.backend
                use_flashmla = backend == AttentionBackendEnum.FLASHMLA
                use_cutlass_mla = backend == AttentionBackendEnum.CUTLASS_MLA
                use_flashinfer_mla = backend == AttentionBackendEnum.FLASHINFER_MLA

            if (
                use_flashmla
                and is_flashmla_dense_supported()[0]
                and cache_config.block_size % 64 != 0
            ):
                cache_config.block_size = 64
                logger.info("Forcing kv cache block size to 64 for FlashMLA backend.")

            if use_cutlass_mla and cache_config.block_size % 128 != 0:
                cache_config.block_size = 128
                logger.info(
                    "Forcing kv cache block size to 128 for CUTLASS_MLA backend."
                )

            if (
                use_flashinfer_mla
                and cache_config.block_size != 32
                and cache_config.block_size % 64 != 0
            ):
                cache_config.block_size = 64
                logger.info(
                    "Forcing kv cache block size to 64 for FlashInferMLA backend."
                )

            # TODO(Chen): remove this hacky code
            if use_sparse and cache_config.block_size != 64:
                cache_config.block_size = 64
                logger.info(
                    "Forcing kv cache block size to 64 for FlashMLASparse backend."
                )

        scheduler_config = vllm_config.scheduler_config
        # Note: model_config may be None during testing
        if (
            model_config is not None
            and model_config.is_mm_prefix_lm
            and scheduler_config.is_multimodal_model
            and not scheduler_config.disable_chunked_mm_input
        ):
            logger.warning(
                "Forcing --disable_chunked_mm_input for models "
                "with multimodal-bidirectional attention."
            )
            scheduler_config.disable_chunked_mm_input = True

    @classmethod
    def get_current_memory_usage(
        cls, device: torch.types.Device | None = None
    ) -> float:
        torch.cuda.empty_cache()
        torch.cuda.reset_peak_memory_stats(device)
        return torch.cuda.max_memory_allocated(device)

    @classmethod
    def get_valid_backends(
        cls,
        device_capability: DeviceCapability,
        attn_selector_config: "AttentionSelectorConfig",
    ) -> tuple[
        list[tuple["AttentionBackendEnum", int]],
        dict["AttentionBackendEnum", list[str]],
    ]:
        valid_backends_priorities = []
        invalid_reasons = {}

        backend_priorities = _get_backend_priorities(
            attn_selector_config.use_mla, device_capability
        )
        for priority, backend in enumerate(backend_priorities):
            try:
                backend_class = backend.get_class()
                invalid_reasons_i = backend_class.validate_configuration(
                    device_capability=device_capability,
                    **attn_selector_config._asdict(),
                )
            except ImportError:
                invalid_reasons_i = ["ImportError"]
            if invalid_reasons_i:
                invalid_reasons[backend] = invalid_reasons_i
            else:
                valid_backends_priorities.append((backend, priority))

        return valid_backends_priorities, invalid_reasons

    @classmethod
    def get_attn_backend_cls(
        cls,
        selected_backend: "AttentionBackendEnum",
        attn_selector_config: "AttentionSelectorConfig",
    ) -> str:
        device_capability = cls.get_device_capability()
        assert device_capability is not None

        attn_selector_config = attn_selector_config._replace(block_size=None)
        # First try checking just the selected backend, if there is one.
        if selected_backend is not None:
            try:
                backend_class = selected_backend.get_class()
                invalid_reasons = backend_class.validate_configuration(
                    device_capability=device_capability,
                    **attn_selector_config._asdict(),
                )
            except ImportError:
                invalid_reasons = ["ImportError"]
            if invalid_reasons:
                raise ValueError(
                    f"Selected backend {selected_backend} is not valid for "
                    f"this configuration. Reason: {invalid_reasons}"
                )
            else:
                logger.info("Using %s backend.", selected_backend)
                return selected_backend.get_path()

        # No selected backend or the selected backend is invalid,
        # so we try finding a valid backend.
        valid_backends_priorities, invalid_reasons = cls.get_valid_backends(
            device_capability=device_capability,
            attn_selector_config=attn_selector_config,
        )
        reasons_str = (
            "{"
            + ", ".join(
                f"{backend.name}: [{', '.join(reasons)}]"
                for backend, reasons in invalid_reasons.items()
            )
            + "}"
        )
        config_str = attn_selector_config.__repr__()
        logger.debug_once(
            f"Some attention backends are not valid for {cls.device_name} with "
            f"{config_str}. Reasons: {reasons_str}."
        )
        if len(valid_backends_priorities) == 0:
            raise ValueError(
                f"No valid attention backend found for {cls.device_name} "
                f"with {config_str}. Reasons: {reasons_str}."
            )

        # We have found some valid backends. Select the one with the
        # highest priority.
        sorted_indices = sorted(
            range(len(valid_backends_priorities)),
            key=lambda i: valid_backends_priorities[i][1],
        )
        selected_index = sorted_indices[0]
        selected_backend = valid_backends_priorities[selected_index][0]
        logger.info_once(
            "Using %s attention backend out of potential backends: %s.",
            selected_backend.name,
            "[" + ", ".join(f"'{b[0].name}'" for b in valid_backends_priorities) + "]",
            scope="local",
        )

        return selected_backend.get_path()

    @classmethod
    def get_supported_vit_attn_backends(cls) -> list["AttentionBackendEnum"]:
        return [
            AttentionBackendEnum.TORCH_SDPA,
            AttentionBackendEnum.FLASH_ATTN,
        ]

    @classmethod
    def get_vit_attn_backend(
        cls,
        head_size: int,
        dtype: torch.dtype,
        backend: "AttentionBackendEnum | None" = None,
    ) -> "AttentionBackendEnum":
        if backend is not None:
            assert backend in cls.get_supported_vit_attn_backends(), (
                f"Backend {backend} is not supported for vit attention. "
                f"Supported backends are: {cls.get_supported_vit_attn_backends()}"
            )
            logger.info_once(f"Using backend {backend} for vit attention")
            return backend

        # Try FlashAttention first
        if (cc := cls.get_device_capability()) and cc.major >= 8:
            try:
                backend_class = AttentionBackendEnum.FLASH_ATTN.get_class()
                if backend_class.supports_head_size(
                    head_size
                ) and backend_class.supports_dtype(dtype):
                    return AttentionBackendEnum.FLASH_ATTN
            except ImportError:
                pass

        return AttentionBackendEnum.TORCH_SDPA

    @classmethod
    def get_punica_wrapper(cls) -> str:
        return "vllm.lora.punica_wrapper.punica_gpu.PunicaWrapperGPU"

    @classmethod
    def get_device_communicator_cls(cls) -> str:
        return (
            "vllm.distributed.device_communicators.cuda_communicator.CudaCommunicator"  # noqa
        )

    @classmethod
    def supports_fp8(cls) -> bool:
        return cls.has_device_capability(89)

    @classmethod
    def use_custom_allreduce(cls) -> bool:
        return True

    @classmethod
    def opaque_attention_op(cls) -> bool:
        return True

    @classmethod
    def get_static_graph_wrapper_cls(cls) -> str:
        return "vllm.compilation.cuda_graph.CUDAGraphWrapper"

    @classmethod
    def device_count(cls) -> int:
        return cuda_device_count_stateless()

    @classmethod
    def check_if_supports_dtype(cls, dtype: torch.dtype):
        if dtype == torch.bfloat16:  # noqa: SIM102
            if not cls.has_device_capability(80):
                capability = cls.get_device_capability()
                gpu_name = cls.get_device_name()

                if capability is None:
                    compute_str = "does not have a compute capability"
                else:
                    version_str = capability.as_version_str()
                    compute_str = f"has compute capability {version_str}"

                raise ValueError(
                    "Bfloat16 is only supported on GPUs "
                    "with compute capability of at least 8.0. "
                    f"Your {gpu_name} GPU {compute_str}. "
                    "You can use float16 instead by explicitly setting the "
                    "`dtype` flag in CLI, for example: --dtype=half."
                )

    @classmethod
    def insert_blocks_to_device(
        cls,
        src_cache: torch.Tensor,
        dst_cache: torch.Tensor,
        src_block_indices: torch.Tensor,
        dst_block_indices: torch.Tensor,
    ) -> None:
        """Copy blocks from src_cache to dst_cache on GPU."""
        _src_cache = src_cache[:, src_block_indices]
        dst_cache[:, dst_block_indices] = _src_cache.to(dst_cache.device)

    @classmethod
    def swap_out_blocks_to_host(
        cls,
        src_cache: torch.Tensor,
        dst_cache: torch.Tensor,
        src_block_indices: torch.Tensor,
        dst_block_indices: torch.Tensor,
    ) -> None:
        """Copy blocks from GPU to host (CPU)."""
        _src_cache = src_cache[:, src_block_indices]
        dst_cache[:, dst_block_indices] = _src_cache.cpu()

    @classmethod
    def support_hybrid_kv_cache(cls) -> bool:
        return True

    @classmethod
    def support_static_graph_mode(cls) -> bool:
        return True

insert_blocks_to_device classmethod

insert_blocks_to_device(
    src_cache: Tensor,
    dst_cache: Tensor,
    src_block_indices: Tensor,
    dst_block_indices: Tensor,
) -> None

Copy blocks from src_cache to dst_cache on GPU.

Source code in vllm/platforms/cuda.py
@classmethod
def insert_blocks_to_device(
    cls,
    src_cache: torch.Tensor,
    dst_cache: torch.Tensor,
    src_block_indices: torch.Tensor,
    dst_block_indices: torch.Tensor,
) -> None:
    """Copy blocks from src_cache to dst_cache on GPU."""
    _src_cache = src_cache[:, src_block_indices]
    dst_cache[:, dst_block_indices] = _src_cache.to(dst_cache.device)

set_device classmethod

set_device(device: device) -> None

Set the device for the current platform.

Source code in vllm/platforms/cuda.py
@classmethod
def set_device(cls, device: torch.device) -> None:
    """
    Set the device for the current platform.
    """
    torch.cuda.set_device(device)
    # With this trick we can force the device to be set eagerly
    # see https://github.com/pytorch/pytorch/issues/155668
    # for why and when it is needed
    _ = torch.zeros(1, device=device)

swap_out_blocks_to_host classmethod

swap_out_blocks_to_host(
    src_cache: Tensor,
    dst_cache: Tensor,
    src_block_indices: Tensor,
    dst_block_indices: Tensor,
) -> None

Copy blocks from GPU to host (CPU).

Source code in vllm/platforms/cuda.py
@classmethod
def swap_out_blocks_to_host(
    cls,
    src_cache: torch.Tensor,
    dst_cache: torch.Tensor,
    src_block_indices: torch.Tensor,
    dst_block_indices: torch.Tensor,
) -> None:
    """Copy blocks from GPU to host (CPU)."""
    _src_cache = src_cache[:, src_block_indices]
    dst_cache[:, dst_block_indices] = _src_cache.cpu()

NvmlCudaPlatform

Bases: CudaPlatformBase

Source code in vllm/platforms/cuda.py
class NvmlCudaPlatform(CudaPlatformBase):
    @classmethod
    @cache
    @with_nvml_context
    def get_device_capability(cls, device_id: int = 0) -> DeviceCapability | None:
        try:
            physical_device_id = cls.device_id_to_physical_device_id(device_id)
            handle = pynvml.nvmlDeviceGetHandleByIndex(physical_device_id)
            major, minor = pynvml.nvmlDeviceGetCudaComputeCapability(handle)
            return DeviceCapability(major=major, minor=minor)
        except RuntimeError:
            return None

    @classmethod
    @with_nvml_context
    def has_device_capability(
        cls,
        capability: tuple[int, int] | int,
        device_id: int = 0,
    ) -> bool:
        try:
            return super().has_device_capability(capability, device_id)
        except RuntimeError:
            return False

    @classmethod
    @with_nvml_context
    def get_device_name(cls, device_id: int = 0) -> str:
        physical_device_id = cls.device_id_to_physical_device_id(device_id)
        return cls._get_physical_device_name(physical_device_id)

    @classmethod
    @with_nvml_context
    def get_device_uuid(cls, device_id: int = 0) -> str:
        physical_device_id = cls.device_id_to_physical_device_id(device_id)
        handle = pynvml.nvmlDeviceGetHandleByIndex(physical_device_id)
        return pynvml.nvmlDeviceGetUUID(handle)

    @classmethod
    @with_nvml_context
    def get_device_total_memory(cls, device_id: int = 0) -> int:
        physical_device_id = cls.device_id_to_physical_device_id(device_id)
        handle = pynvml.nvmlDeviceGetHandleByIndex(physical_device_id)
        return int(pynvml.nvmlDeviceGetMemoryInfo(handle).total)

    @classmethod
    @with_nvml_context
    def is_fully_connected(cls, physical_device_ids: list[int]) -> bool:
        """
        query if the set of gpus are fully connected by nvlink (1 hop)
        """
        handles = [pynvml.nvmlDeviceGetHandleByIndex(i) for i in physical_device_ids]
        for i, handle in enumerate(handles):
            for j, peer_handle in enumerate(handles):
                if i < j:
                    try:
                        p2p_status = pynvml.nvmlDeviceGetP2PStatus(
                            handle,
                            peer_handle,
                            pynvml.NVML_P2P_CAPS_INDEX_NVLINK,
                        )
                        if p2p_status != pynvml.NVML_P2P_STATUS_OK:
                            return False
                    except pynvml.NVMLError:
                        logger.exception(
                            "NVLink detection failed. This is normal if"
                            " your machine has no NVLink equipped."
                        )
                        return False
        return True

    @classmethod
    def _get_physical_device_name(cls, device_id: int = 0) -> str:
        handle = pynvml.nvmlDeviceGetHandleByIndex(device_id)
        return pynvml.nvmlDeviceGetName(handle)

    @classmethod
    @with_nvml_context
    def log_warnings(cls):
        device_ids: int = pynvml.nvmlDeviceGetCount()
        if device_ids > 1:
            device_names = [cls._get_physical_device_name(i) for i in range(device_ids)]
            if (
                len(set(device_names)) > 1
                and os.environ.get("CUDA_DEVICE_ORDER") != "PCI_BUS_ID"
            ):
                logger.warning(
                    "Detected different devices in the system: %s. Please"
                    " make sure to set `CUDA_DEVICE_ORDER=PCI_BUS_ID` to "
                    "avoid unexpected behavior.",
                    ", ".join(device_names),
                )

is_fully_connected classmethod

is_fully_connected(physical_device_ids: list[int]) -> bool

query if the set of gpus are fully connected by nvlink (1 hop)

Source code in vllm/platforms/cuda.py
@classmethod
@with_nvml_context
def is_fully_connected(cls, physical_device_ids: list[int]) -> bool:
    """
    query if the set of gpus are fully connected by nvlink (1 hop)
    """
    handles = [pynvml.nvmlDeviceGetHandleByIndex(i) for i in physical_device_ids]
    for i, handle in enumerate(handles):
        for j, peer_handle in enumerate(handles):
            if i < j:
                try:
                    p2p_status = pynvml.nvmlDeviceGetP2PStatus(
                        handle,
                        peer_handle,
                        pynvml.NVML_P2P_CAPS_INDEX_NVLINK,
                    )
                    if p2p_status != pynvml.NVML_P2P_STATUS_OK:
                        return False
                except pynvml.NVMLError:
                    logger.exception(
                        "NVLink detection failed. This is normal if"
                        " your machine has no NVLink equipped."
                    )
                    return False
    return True

_get_backend_priorities cached

_get_backend_priorities(
    use_mla: bool, device_capability: DeviceCapability
) -> list[AttentionBackendEnum]

Get backend priorities with lazy import to avoid circular dependency.

Source code in vllm/platforms/cuda.py
@cache
def _get_backend_priorities(
    use_mla: bool,
    device_capability: DeviceCapability,
) -> list[AttentionBackendEnum]:
    """Get backend priorities with lazy import to avoid circular dependency."""
    if use_mla:
        if device_capability.major == 10:
            return [
                AttentionBackendEnum.FLASHINFER_MLA,
                AttentionBackendEnum.CUTLASS_MLA,
                AttentionBackendEnum.FLASH_ATTN_MLA,
                AttentionBackendEnum.FLASHMLA,
                AttentionBackendEnum.TRITON_MLA,
                AttentionBackendEnum.FLASHMLA_SPARSE,
            ]
        else:
            return [
                AttentionBackendEnum.FLASH_ATTN_MLA,
                AttentionBackendEnum.FLASHMLA,
                AttentionBackendEnum.FLASHINFER_MLA,
                AttentionBackendEnum.TRITON_MLA,
                AttentionBackendEnum.FLASHMLA_SPARSE,
            ]
    else:
        if device_capability.major == 10:
            return [
                AttentionBackendEnum.FLASHINFER,
                AttentionBackendEnum.FLASH_ATTN,
                AttentionBackendEnum.TRITON_ATTN,
                AttentionBackendEnum.FLEX_ATTENTION,
            ]
        else:
            return [
                AttentionBackendEnum.FLASH_ATTN,
                AttentionBackendEnum.FLASHINFER,
                AttentionBackendEnum.TRITON_ATTN,
                AttentionBackendEnum.FLEX_ATTENTION,
            ]