class BaiChuanAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
hidden_size: int,
num_heads: int,
position_embedding: str,
rope_parameters: dict,
max_position_embeddings: int = 8192,
cache_config: CacheConfig | None = None,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
):
super().__init__()
self.hidden_size = hidden_size
tensor_model_parallel_world_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_heads
assert self.total_num_heads % tensor_model_parallel_world_size == 0
self.num_heads = self.total_num_heads // tensor_model_parallel_world_size
self.head_dim = hidden_size // self.total_num_heads
self.position_embedding = position_embedding
self.max_position_embeddings = max_position_embeddings
# pylint: disable=invalid-name
self.W_pack = QKVParallelLinear(
hidden_size,
self.head_dim,
self.total_num_heads,
self.total_num_heads,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.W_pack",
)
self.o_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.o_proj",
)
# Create the alibi slopes and slice them.
if self.position_embedding == "ALIBI":
tp_rank = get_tensor_model_parallel_rank()
head_start = tp_rank * self.num_heads
head_end = (tp_rank + 1) * self.num_heads
alibi_slopes = _get_alibi_slopes(self.total_num_heads)
alibi_slopes = alibi_slopes[head_start:head_end].tolist()
scaling = self.head_dim**-0.5
self.attn = Attention(
self.num_heads,
self.head_dim,
scaling,
alibi_slopes=alibi_slopes,
quant_config=quant_config,
prefix=f"{prefix}.attn",
)
else:
self.rotary_emb = get_rope(
self.head_dim,
max_position=self.max_position_embeddings,
rope_parameters=rope_parameters,
)
self.scaling = self.head_dim**-0.5
self.attn = Attention(
self.num_heads,
self.head_dim,
self.scaling,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
) -> torch.Tensor:
qkv, _ = self.W_pack(hidden_states)
q, k, v = qkv.chunk(chunks=3, dim=-1)
if self.position_embedding != "ALIBI":
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v)
output, _ = self.o_proj(attn_output)
return output