Skip to content

vllm.model_executor.layers.fused_moe

Modules:

Name Description
activation

MoE activation function enum and utilities.

all2all_utils
batched_deep_gemm_moe
config
cpu_fused_moe
cutlass_moe

CUTLASS based Fused MoE kernels.

deep_gemm_moe
deep_gemm_utils

Taken from https://github.com/ModelTC/LightLLM/blob/8ed97c74c18f11505b048b1ba00ba5c0cef8bff6/lightllm/common/fused_moe/deepep_scatter_gather.py

deepep_ht_prepare_finalize
deepep_ll_prepare_finalize
fallback
flashinfer_a2a_prepare_finalize
flashinfer_cutedsl_moe
flashinfer_cutlass_moe
flashinfer_trtllm_moe
fused_batched_moe

Fused batched MoE kernel.

fused_marlin_moe

Fused MoE utilities for GPTQ.

fused_moe

Fused MoE Triton kernels.

fused_moe_method_base
gpt_oss_triton_kernels_moe
layer
modular_kernel
moe_align_block_size
moe_permute_unpermute
mori_prepare_finalize
oracle
pplx_prepare_finalize
prepare_finalize
rocm_aiter_fused_moe
routed_experts_capturer
router
runner
shared_fused_moe
topk_weight_and_reduce
triton_cutlass_moe
triton_deep_gemm_moe
trtllm_moe
unquantized_fused_moe_method
utils
zero_expert_fused_moe

BatchedDeepGemmExperts

Bases: FusedMoEPermuteExpertsUnpermute

Source code in vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py
class BatchedDeepGemmExperts(mk.FusedMoEPermuteExpertsUnpermute):
    def __init__(
        self,
        moe_config: FusedMoEConfig,
        quant_config: FusedMoEQuantConfig,
        max_num_tokens: int,
        num_dispatchers: int,
    ):
        """
        max_num_tokens: Maximum number of tokens from a DP Rank
        num_dispatchers: The number of DP dispatchers.
        quant_config: Quantization configuration
        """
        super().__init__(
            moe_config=moe_config,
            quant_config=quant_config,
            max_num_tokens=max_num_tokens,
            num_dispatchers=num_dispatchers,
        )
        assert self.block_shape == get_mk_alignment_for_contiguous_layout()
        assert self.quant_config.use_fp8_w8a8

    @staticmethod
    def activation_format() -> mk.FusedMoEActivationFormat:
        return mk.FusedMoEActivationFormat.BatchedExperts

    @staticmethod
    def _supports_current_device() -> bool:
        return is_deep_gemm_supported()

    @staticmethod
    def _supports_no_act_and_mul() -> bool:
        return False

    @staticmethod
    def _supports_quant_scheme(
        weight_key: QuantKey | None,
        activation_key: QuantKey | None,
    ) -> bool:
        SUPPORTED_W_A = [(kFp8Static128BlockSym, kFp8Dynamic128Sym)]
        return (weight_key, activation_key) in SUPPORTED_W_A

    @staticmethod
    def _supports_activation(activation: MoEActivation) -> bool:
        return activation == MoEActivation.SILU

    @staticmethod
    def _supports_parallel_config(moe_parallel_config: FusedMoEParallelConfig) -> bool:
        return True

    def supports_chunking(self) -> bool:
        return False

    def supports_expert_map(self) -> bool:
        return False

    def supports_packed_ue8m0_act_scales(self) -> bool:
        """
        DeepGemm supports packed ue8m0 activation scales format in devices == sm100
        """
        return (
            is_deep_gemm_e8m0_used()
            and current_platform.is_device_capability_family(100)
        )

    def finalize_weight_and_reduce_impl(self) -> mk.TopKWeightAndReduce:
        # Let PrepareAndFinalize::finalize() decide the impl.
        return TopKWeightAndReduceDelegate()

    def workspace_shapes(
        self,
        M: int,
        N: int,
        K: int,
        topk: int,
        global_num_experts: int,
        local_num_experts: int,
        expert_tokens_meta: mk.ExpertTokensMetadata | None,
        activation: MoEActivation,
    ) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...]]:
        # FIXME (varun): We should be able to dispatch only from the leader
        # DP ranks in the case of TP > 1. At the moment, all the Ranks
        # end up sending their tokens. This needs to be fixed.
        assert self.num_dispatchers is not None
        assert self.max_num_tokens is not None
        num_dispatchers = self.num_dispatchers
        num_experts = local_num_experts
        max_num_tokens = M if self.max_num_tokens is None else self.max_num_tokens
        activation_out_dim = self.adjust_N_for_activation(N, activation)
        workspace13 = (num_experts, max_num_tokens * num_dispatchers, max(K, N))
        workspace2 = (num_experts, max_num_tokens * num_dispatchers, activation_out_dim)
        output = (num_experts, max_num_tokens * num_dispatchers, K)
        return (workspace13, workspace2, output)

    def estimate_expected_m(
        self, global_num_experts: int, max_tokens_per_expert: int, topk: int
    ) -> int:
        dp_meta = (
            get_forward_context().dp_metadata
            if is_forward_context_available()
            else None
        )
        if dp_meta is None:
            logger.warning_once(
                "DPMetadata unavailable. Defaulting expected_m to "
                f"{max_tokens_per_expert}.",
                scope="local",
            )
            return max_tokens_per_expert

        total_num_tokens = dp_meta.num_tokens_across_dp_cpu.sum().item()
        total_num_tokens_replicated = total_num_tokens * topk

        # Assume even load balancing
        assert global_num_experts != 0
        estimate = round_up(int(total_num_tokens_replicated // global_num_experts), 16)
        # clamp estimate
        estimate = max(estimate, 16)
        estimate = min(max_tokens_per_expert, estimate)
        return estimate

    def apply(
        self,
        output: torch.Tensor,
        hidden_states: torch.Tensor,
        w1: torch.Tensor,
        w2: torch.Tensor,
        topk_weights: torch.Tensor,
        topk_ids: torch.Tensor,
        activation: MoEActivation,
        global_num_experts: int,
        expert_map: torch.Tensor | None,
        a1q_scale: torch.Tensor | None,
        a2_scale: torch.Tensor | None,
        workspace13: torch.Tensor,
        workspace2: torch.Tensor,
        expert_tokens_meta: mk.ExpertTokensMetadata | None,
        apply_router_weight_on_input: bool,
    ):
        assert expert_tokens_meta is not None
        expert_num_tokens = expert_tokens_meta.expert_num_tokens

        assert hidden_states.ndim == 3
        assert self.block_shape is not None

        a1q = hidden_states
        _, N, K = w1.size()

        assert w2.size(1) == K

        E, max_num_tokens, N, K, _ = self.moe_problem_size(
            hidden_states, w1, w2, topk_ids
        )

        workspace1 = _resize_cache(workspace13, (E, max_num_tokens, N))

        expected_m = self.estimate_expected_m(
            global_num_experts=global_num_experts,
            max_tokens_per_expert=max_num_tokens,
            topk=topk_ids.size(-1),
        )

        fp8_m_grouped_gemm_nt_masked(
            (a1q, a1q_scale),
            (w1, self.w1_scale),
            workspace1,
            expert_num_tokens,
            expected_m,
        )

        quant_scale_fmt = DeepGemmQuantScaleFMT.from_oracle()
        a2q, a2q_scale = persistent_masked_m_silu_mul_quant(
            workspace1,
            expert_num_tokens,
            quant_scale_fmt=quant_scale_fmt,
        )

        fp8_m_grouped_gemm_nt_masked(
            (a2q, a2q_scale),
            (w2, self.w2_scale),
            output,
            expert_num_tokens,
            expected_m,
        )

__init__

__init__(
    moe_config: FusedMoEConfig,
    quant_config: FusedMoEQuantConfig,
    max_num_tokens: int,
    num_dispatchers: int,
)

max_num_tokens: Maximum number of tokens from a DP Rank num_dispatchers: The number of DP dispatchers. quant_config: Quantization configuration

Source code in vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py
def __init__(
    self,
    moe_config: FusedMoEConfig,
    quant_config: FusedMoEQuantConfig,
    max_num_tokens: int,
    num_dispatchers: int,
):
    """
    max_num_tokens: Maximum number of tokens from a DP Rank
    num_dispatchers: The number of DP dispatchers.
    quant_config: Quantization configuration
    """
    super().__init__(
        moe_config=moe_config,
        quant_config=quant_config,
        max_num_tokens=max_num_tokens,
        num_dispatchers=num_dispatchers,
    )
    assert self.block_shape == get_mk_alignment_for_contiguous_layout()
    assert self.quant_config.use_fp8_w8a8

supports_packed_ue8m0_act_scales

supports_packed_ue8m0_act_scales() -> bool

DeepGemm supports packed ue8m0 activation scales format in devices == sm100

Source code in vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py
def supports_packed_ue8m0_act_scales(self) -> bool:
    """
    DeepGemm supports packed ue8m0 activation scales format in devices == sm100
    """
    return (
        is_deep_gemm_e8m0_used()
        and current_platform.is_device_capability_family(100)
    )

BatchedTritonExperts

Bases: FusedMoEPermuteExpertsUnpermute

A Triton based MoE expert class that operates on expert batched format, i.e. E x max_num_tokens x K. This is the format that the pplx dispatch/combine kernels use.

Source code in vllm/model_executor/layers/fused_moe/fused_batched_moe.py
class BatchedTritonExperts(mk.FusedMoEPermuteExpertsUnpermute):
    """
    A Triton based MoE expert class that operates on expert batched format,
    i.e. E x max_num_tokens x K.  This is the format that the pplx
    dispatch/combine kernels use.
    """

    def __init__(
        self,
        moe_config: FusedMoEConfig,
        quant_config: FusedMoEQuantConfig,
        max_num_tokens: int,
        num_dispatchers: int,
    ):
        super().__init__(
            moe_config=moe_config,
            quant_config=quant_config,
            max_num_tokens=max_num_tokens,
            num_dispatchers=num_dispatchers,
        )
        assert not self.quant_config.use_int8_w8a8, "NYI"
        assert not self.quant_config.use_int8_w8a16, "NYI"
        assert not self.quant_config.use_int4_w4a16, "NYI"
        assert self.quant_config.ocp_mx_scheme is None, "NYI"

    @staticmethod
    def activation_format() -> mk.FusedMoEActivationFormat:
        return mk.FusedMoEActivationFormat.BatchedExperts

    @staticmethod
    def _supports_current_device() -> bool:
        return current_platform.is_cuda_alike()

    @staticmethod
    def _supports_no_act_and_mul() -> bool:
        return False

    @staticmethod
    def _supports_quant_scheme(
        weight_key: QuantKey | None,
        activation_key: QuantKey | None,
    ) -> bool:
        p = current_platform
        if p.is_rocm():
            from vllm.platforms.rocm import on_gfx9

            is_rocm_on_gfx9 = on_gfx9()
        else:
            is_rocm_on_gfx9 = False

        device_supports_fp8 = is_rocm_on_gfx9 or (
            p.is_cuda() and p.has_device_capability((8, 9))
        )

        SUPPORTED_W_A_FP8 = [
            (kFp8Static128BlockSym, kFp8Dynamic128Sym),
            (kFp8StaticChannelSym, kFp8DynamicTokenSym),
            (kFp8StaticTensorSym, kFp8DynamicTokenSym),
            (kFp8StaticTensorSym, kFp8StaticTensorSym),
            (kFp8StaticTensorSym, kFp8DynamicTensorSym),
        ]
        return (weight_key, activation_key) == (None, None) or (
            device_supports_fp8 and (weight_key, activation_key) in SUPPORTED_W_A_FP8
        )

    @staticmethod
    def _supports_activation(activation: MoEActivation) -> bool:
        return activation in [
            MoEActivation.SILU,
            MoEActivation.GELU,
            MoEActivation.SWIGLUOAI,
            MoEActivation.SILU_NO_MUL,
            MoEActivation.GELU_NO_MUL,
            MoEActivation.RELU2_NO_MUL,
        ]

    @staticmethod
    def _supports_parallel_config(moe_parallel_config: FusedMoEParallelConfig) -> bool:
        return True

    def supports_chunking(self) -> bool:
        return False

    def supports_expert_map(self) -> bool:
        return False

    def finalize_weight_and_reduce_impl(self) -> mk.TopKWeightAndReduce:
        # Let PrepareAndFinalize::finalize() decide the impl.
        return TopKWeightAndReduceDelegate()

    def workspace_shapes(
        self,
        M: int,
        N: int,
        K: int,
        topk: int,
        global_num_experts: int,
        local_num_experts: int,
        expert_tokens_meta: mk.ExpertTokensMetadata | None,
        activation: MoEActivation,
    ) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...]]:
        assert self.num_dispatchers is not None
        assert self.max_num_tokens is not None
        num_dp = self.num_dispatchers
        num_experts = local_num_experts
        max_num_tokens = self.max_num_tokens
        activation_out_dim = self.adjust_N_for_activation(N, activation)
        workspace13 = (num_experts, max_num_tokens * num_dp, max(K, N))
        workspace2 = (num_experts, max_num_tokens * num_dp, activation_out_dim)
        output = (num_experts, max_num_tokens * num_dp, K)
        return (workspace13, workspace2, output)

    def apply(
        self,
        output: torch.Tensor,
        hidden_states: torch.Tensor,
        w1: torch.Tensor,
        w2: torch.Tensor,
        topk_weights: torch.Tensor,
        topk_ids: torch.Tensor,
        activation: MoEActivation,
        global_num_experts: int,
        expert_map: torch.Tensor | None,
        a1q_scale: torch.Tensor | None,
        a2_scale: torch.Tensor | None,
        workspace13: torch.Tensor,
        workspace2: torch.Tensor,
        expert_tokens_meta: mk.ExpertTokensMetadata | None,
        apply_router_weight_on_input: bool,
    ):
        # Check constraints.
        if self.quant_config.use_int4_w4a16:
            assert hidden_states.size(-1) // 2 == w1.size(2), "Hidden size mismatch"
        else:
            assert hidden_states.size(-1) == w1.size(2), (
                f"Hidden size mismatch {hidden_states.size(-1)} != {w1.size(2)}"
            )

        assert hidden_states.is_contiguous(), "Hidden_states must be contiguous"
        assert w1.stride(-1) == 1, "Stride of last dimension must be 1"
        assert w2.stride(-1) == 1, "Stride of last dimension must be 1"
        assert hidden_states.dtype in [
            torch.float32,
            torch.float16,
            torch.bfloat16,
            torch.float8_e4m3fn,
        ]
        assert expert_tokens_meta is not None

        expert_num_tokens = expert_tokens_meta.expert_num_tokens

        E, max_num_tokens, N, K, top_k_num = self.moe_problem_size(
            hidden_states, w1, w2, topk_ids
        )

        assert w1.size(0) == E
        assert w2.size(0) == E

        config_dtype = self.quant_config.config_name(hidden_states.dtype)

        config = try_get_optimal_moe_config(
            w1.size(),
            w2.size(),
            top_k_num,
            config_dtype,
            max_num_tokens,
            block_shape=self.block_shape,
        )

        if hidden_states.dtype == torch.bfloat16:
            compute_type = tl.bfloat16
        elif hidden_states.dtype == torch.float16:
            compute_type = tl.float16
        elif hidden_states.dtype == torch.float32:
            compute_type = tl.float32
        elif hidden_states.dtype == torch.float8_e4m3fn:
            compute_type = tl.bfloat16
        else:
            raise ValueError(f"Unsupported compute_type: {hidden_states.dtype}")

        # We can reuse the memory between these because by the time we need
        # cache3, we're done with cache1
        intermediate_cache1 = _resize_cache(workspace13, (E, max_num_tokens, N))
        activation_out_dim = self.adjust_N_for_activation(N, activation)
        intermediate_cache2 = _resize_cache(
            workspace2, (E, max_num_tokens, activation_out_dim)
        )

        # TODO(bnell): should this be done for any quantized type?
        if self.quant_config.use_fp8_w8a8:
            intermediate_cache1.fill_(0)

        a1q_scale = normalize_batched_scales_shape(a1q_scale, E)

        # MM1
        invoke_moe_batched_triton_kernel(
            A=hidden_states,
            B=w1,
            C=intermediate_cache1,
            expert_num_tokens=expert_num_tokens,
            compute_type=compute_type,
            A_scale=a1q_scale,
            B_scale=self.w1_scale,
            B_zp=self.w1_zp,
            use_fp8_w8a8=self.quant_config.use_fp8_w8a8,
            use_int8_w8a16=self.quant_config.use_int8_w8a16,
            use_int4_w4a16=self.quant_config.use_int4_w4a16,
            config=config,
            per_act_token_quant=self.per_act_token_quant,
            block_shape=self.block_shape,
        )

        intermediate_cache2.fill_(0)

        # TODO (bnell): use triton utility from batched deep gemm.
        self.activation(
            activation,
            intermediate_cache2.view(-1, activation_out_dim),
            intermediate_cache1.view(-1, N),
        )

        qintermediate_cache2, a2q_scale = batched_moe_kernel_quantize_input(
            intermediate_cache2,
            a2_scale,
            max_num_tokens,
            E,
            N,
            expert_num_tokens,
            self.quant_dtype,
            self.per_act_token_quant,
            self.block_shape,
        )

        invoke_moe_batched_triton_kernel(
            A=qintermediate_cache2,
            B=w2,
            C=output,
            expert_num_tokens=expert_num_tokens,
            compute_type=compute_type,
            A_scale=a2q_scale,
            B_scale=self.w2_scale,
            B_zp=self.w2_zp,
            use_fp8_w8a8=self.quant_config.use_fp8_w8a8,
            use_int8_w8a16=self.quant_config.use_int8_w8a16,
            use_int4_w4a16=self.quant_config.use_int4_w4a16,
            config=config,
            per_act_token_quant=self.per_act_token_quant,
            block_shape=self.block_shape,
        )

CutlassBatchedExpertsFp8

Bases: CutlassExpertsFp8Base

Batched CUTLASS FP8 fused MoE expert implementation.

Source code in vllm/model_executor/layers/fused_moe/cutlass_moe.py
class CutlassBatchedExpertsFp8(CutlassExpertsFp8Base):
    """Batched CUTLASS FP8 fused MoE expert implementation."""

    @staticmethod
    def _supports_parallel_config(moe_parallel_config: FusedMoEParallelConfig) -> bool:
        # BATCHED activation format works with EP because
        # expert_map is not used to identify experts (the
        # info is encoded/managed by the P/F logic).
        return True

    @staticmethod
    def activation_format() -> mk.FusedMoEActivationFormat:
        return mk.FusedMoEActivationFormat.BatchedExperts

    def supports_chunking(self) -> bool:
        return False

    def supports_expert_map(self) -> bool:
        return False

    def workspace_dtype(self, act_dtype: torch.dtype) -> torch.dtype:
        return self.out_dtype if self.out_dtype is not None else act_dtype

    def workspace_shapes(
        self,
        M: int,
        N: int,
        K: int,
        topk: int,
        global_num_experts: int,
        local_num_experts: int,
        expert_tokens_meta: mk.ExpertTokensMetadata | None,
        activation: MoEActivation,
    ) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...]]:
        num_dp = self.num_dispatchers
        assert num_dp is not None
        experts_per_worker = self.moe_config.num_local_experts
        activation_out_dim = self.adjust_N_for_activation(N, activation)
        workspace1 = (experts_per_worker, M * num_dp, max(N, K))
        workspace2 = (
            experts_per_worker,
            M * num_dp,
            max(activation_out_dim, K),
        )
        output = (experts_per_worker, M, K)
        return (workspace1, workspace2, output)

CutlassExpertsFp8

Bases: CutlassExpertsFp8Base

CUTLASS FP8 fused MoE expert implementation.

Source code in vllm/model_executor/layers/fused_moe/cutlass_moe.py
class CutlassExpertsFp8(CutlassExpertsFp8Base):
    """CUTLASS FP8 fused MoE expert implementation."""

    @staticmethod
    def activation_format() -> mk.FusedMoEActivationFormat:
        return mk.FusedMoEActivationFormat.Standard

    @staticmethod
    def _supports_parallel_config(moe_parallel_config: FusedMoEParallelConfig) -> bool:
        # CutlassExpertsFp8 does not support expert map, which is
        # needed for STANDARD activation format kernels in DP/EP mode.
        # Note that the BATCHED activation format does not use
        # the expert map for identifying experts.
        return not (
            moe_parallel_config.use_fi_all2allv_kernels
            or moe_parallel_config.use_deepep_ht_kernels
        )

    def supports_chunking(self) -> bool:
        return True

    def supports_expert_map(self) -> bool:
        return False

    def finalize_weight_and_reduce_impl(self) -> mk.TopKWeightAndReduce:
        # topk weights and reduction are fused in moe_unpermute cuda kernel
        return TopKWeightAndReduceNoOP()

    def workspace_dtype(self, act_dtype: torch.dtype) -> torch.dtype:
        return self.out_dtype if self.out_dtype is not None else act_dtype

    def workspace_shapes(
        self,
        M: int,
        N: int,
        K: int,
        topk: int,
        global_num_experts: int,
        local_num_experts: int,
        expert_tokens_meta: mk.ExpertTokensMetadata | None,
        activation: MoEActivation,
    ) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...]]:
        activation_out_dim = self.adjust_N_for_activation(N, activation)
        workspace1 = (M * topk, max(N, K))
        workspace2 = (M * topk, max(activation_out_dim, K))
        output = (M, K)
        return (workspace1, workspace2, output)

DeepGemmExperts

Bases: FusedMoEPermuteExpertsUnpermute

DeepGemm-based fused MoE expert implementation.

Source code in vllm/model_executor/layers/fused_moe/deep_gemm_moe.py
class DeepGemmExperts(mk.FusedMoEPermuteExpertsUnpermute):
    """DeepGemm-based fused MoE expert implementation."""

    def __init__(self, moe_config: FusedMoEConfig, quant_config: FusedMoEQuantConfig):
        super().__init__(moe_config=moe_config, quant_config=quant_config)
        assert quant_config.block_shape == get_mk_alignment_for_contiguous_layout()
        assert quant_config.quant_dtype == torch.float8_e4m3fn
        assert not quant_config.per_act_token_quant
        assert not quant_config.per_out_ch_quant

    @staticmethod
    def activation_format() -> mk.FusedMoEActivationFormat:
        return mk.FusedMoEActivationFormat.Standard

    @staticmethod
    def _supports_current_device() -> bool:
        return is_deep_gemm_supported()

    @staticmethod
    def _supports_no_act_and_mul() -> bool:
        return False

    @staticmethod
    def _supports_quant_scheme(
        weight_key: QuantKey | None,
        activation_key: QuantKey | None,
    ) -> bool:
        SUPPORTED_W_A = [
            (kFp8Static128BlockSym, kFp8Dynamic128Sym),
        ]
        return (weight_key, activation_key) in SUPPORTED_W_A

    @staticmethod
    def _supports_activation(activation: MoEActivation) -> bool:
        return activation in [MoEActivation.SILU, MoEActivation.SWIGLUSTEP]

    @staticmethod
    def _supports_parallel_config(moe_parallel_config: FusedMoEParallelConfig) -> bool:
        # NOTE(rob): discovered an IMA with this combination. Needs investigation.
        return not moe_parallel_config.use_fi_all2allv_kernels

    def supports_chunking(self) -> bool:
        return True

    def supports_expert_map(self) -> bool:
        return True

    def finalize_weight_and_reduce_impl(self) -> mk.TopKWeightAndReduce:
        return TopKWeightAndReduceNoOP()

    def workspace_shapes(
        self,
        M: int,
        N: int,
        K: int,
        topk: int,
        global_num_experts: int,
        local_num_experts: int,
        expert_tokens_meta: mk.ExpertTokensMetadata | None,
        activation: MoEActivation,
    ) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...]]:
        assert self.block_shape is not None
        block_m = self.block_shape[0]
        M_sum = compute_aligned_M(
            M, topk, local_num_experts, block_m, expert_tokens_meta
        )
        assert M_sum % block_m == 0

        activation_out_dim = self.adjust_N_for_activation(N, activation)
        workspace1 = (M_sum, max(activation_out_dim, K))
        workspace2 = (M_sum, max(N, K))
        output = (M, K)
        return (workspace1, workspace2, output)

    def _act_mul_quant(
        self, input: torch.Tensor, output: torch.Tensor, activation: MoEActivation
    ) -> tuple[torch.Tensor, torch.Tensor]:
        assert self.block_shape is not None
        block_k = self.block_shape[1]
        scale_fmt = DeepGemmQuantScaleFMT.from_oracle()

        M_sum, N = input.size()
        activation_out_dim = self.adjust_N_for_activation(N, activation)

        # 1. DeepGemm UE8M0: use packed per-token-group quant
        if scale_fmt == DeepGemmQuantScaleFMT.UE8M0:
            act_out = torch.empty(
                (M_sum, activation_out_dim), dtype=input.dtype, device=input.device
            )
            self.activation(activation, act_out, input)
            a2q, a2q_scale = per_token_group_quant_fp8_packed_for_deepgemm(
                act_out,
                block_k,
                out_q=output,
            )
            return a2q, a2q_scale

        # 2. Hopper / non‑E8M0: prefer the fused SiLU+mul+quant kernel
        if activation == MoEActivation.SILU:
            use_ue8m0 = scale_fmt == DeepGemmQuantScaleFMT.FLOAT32_CEIL_UE8M0
            return silu_mul_per_token_group_quant_fp8_colmajor(
                input=input,
                output=output,
                use_ue8m0=use_ue8m0,
            )

        # 3. fallback path for non-SiLU activations in non‑UE8M0 cases.
        act_out = torch.empty(
            (M_sum, activation_out_dim), dtype=input.dtype, device=input.device
        )
        self.activation(activation, act_out, input)
        return per_token_group_quant_fp8(
            act_out, block_k, column_major_scales=True, out_q=output
        )

    def apply(
        self,
        output: torch.Tensor,
        hidden_states: torch.Tensor,
        w1: torch.Tensor,
        w2: torch.Tensor,
        topk_weights: torch.Tensor,
        topk_ids: torch.Tensor,
        activation: MoEActivation,
        global_num_experts: int,
        expert_map: torch.Tensor | None,
        a1q_scale: torch.Tensor | None,
        a2_scale: torch.Tensor | None,
        workspace13: torch.Tensor,
        workspace2: torch.Tensor,
        expert_tokens_meta: mk.ExpertTokensMetadata | None,
        apply_router_weight_on_input: bool,
    ):
        assert a1q_scale is not None
        assert a2_scale is None
        assert self.block_shape is not None
        assert self.w1_scale is not None
        assert self.w2_scale is not None

        a1q = hidden_states
        _, N, K = w1.size()

        local_num_experts = w1.size(0)
        if global_num_experts == -1:
            global_num_experts = local_num_experts

        assert w2.size(1) == K

        M_sum = compute_aligned_M(
            M=topk_ids.size(0),
            num_topk=topk_ids.size(1),
            local_num_experts=local_num_experts,
            alignment=get_mk_alignment_for_contiguous_layout()[0],
            expert_tokens_meta=expert_tokens_meta,
        )

        a1q_perm = _resize_cache(
            workspace13.view(dtype=torch.float8_e4m3fn), (M_sum, K)
        )
        a1q, a1q_scale, expert_ids, inv_perm = deepgemm_moe_permute(
            aq=a1q,
            aq_scale=a1q_scale,
            topk_ids=topk_ids,
            local_num_experts=local_num_experts,
            expert_map=expert_map,
            expert_tokens_meta=expert_tokens_meta,
            aq_out=a1q_perm,
        )
        assert a1q.size(0) == M_sum

        mm1_out = _resize_cache(workspace2, (M_sum, N))
        m_grouped_fp8_gemm_nt_contiguous(
            (a1q, a1q_scale), (w1, self.w1_scale), mm1_out, expert_ids
        )

        activation_out_dim = self.adjust_N_for_activation(N, activation)
        quant_out = _resize_cache(
            workspace13.view(dtype=torch.float8_e4m3fn), (M_sum, activation_out_dim)
        )
        a2q, a2q_scale = self._act_mul_quant(
            input=mm1_out.view(-1, N), output=quant_out, activation=activation
        )

        mm2_out = _resize_cache(workspace2, (M_sum, K))
        m_grouped_fp8_gemm_nt_contiguous(
            (a2q, a2q_scale), (w2, self.w2_scale), mm2_out, expert_ids
        )

        if apply_router_weight_on_input:
            topk_weights = torch.ones_like(topk_weights)

        deepgemm_unpermute_and_reduce(
            a=mm2_out,
            topk_ids=topk_ids,
            topk_weights=topk_weights,
            inv_perm=inv_perm,
            expert_map=expert_map,
            output=output,
        )

FusedMoE

Bases: CustomOp

FusedMoE layer for MoE models.

This layer contains both MergedColumnParallel weights (gate_up_proj / w13) and RowParallelLinear weights (down_proj/ w2).

Note: Mixtral uses w1, w2, and w3 for gate, up, and down_proj. We copy that naming convention here and handle any remapping in the load_weights function in each model implementation.

Parameters:

Name Type Description Default
num_experts int

Number of experts in the model

required
top_k int

Number of experts selected for each token

required
hidden_size int

Input hidden state size of the transformer

required
intermediate_size int

Intermediate size of the experts

required
params_dtype dtype | None

Data type for the parameters.

None
reduce_results bool

Whether to all_reduce on the output of the layer

False
renormalize bool

Whether to renormalize the logits in the fused_moe kernel

True
quant_config QuantizationConfig | None

Quantization configure.

None
enable_eplb bool

Whether to enable expert parallelism load balancer.

False
router_logits_dtype dtype | None

Data type for router logits buffers.

None
Source code in vllm/model_executor/layers/fused_moe/layer.py
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
@CustomOp.register("fused_moe")
class FusedMoE(CustomOp):
    """FusedMoE layer for MoE models.

    This layer contains both MergedColumnParallel weights (gate_up_proj /
    w13) and RowParallelLinear weights (down_proj/ w2).

    Note: Mixtral uses w1, w2, and w3 for gate, up, and down_proj. We
    copy that naming convention here and handle any remapping in the
    load_weights function in each model implementation.

    Args:
        num_experts: Number of experts in the model
        top_k: Number of experts selected for each token
        hidden_size: Input hidden state size of the transformer
        intermediate_size: Intermediate size of the experts
        params_dtype: Data type for the parameters.
        reduce_results: Whether to all_reduce on the output of the layer
        renormalize: Whether to renormalize the logits in the fused_moe kernel
        quant_config: Quantization configure.
        enable_eplb: Whether to enable expert parallelism load balancer.
        router_logits_dtype: Data type for router logits buffers.
    """

    # --8<-- [end:fused_moe]

    def __init__(
        self,
        num_experts: int,  # Global number of experts
        top_k: int,
        hidden_size: int,
        intermediate_size: int,
        params_dtype: torch.dtype | None = None,
        reduce_results: bool = False,
        renormalize: bool = True,
        use_grouped_topk: bool = False,
        num_expert_group: int | None = None,
        topk_group: int | None = None,
        quant_config: QuantizationConfig | None = None,
        tp_size: int | None = None,
        ep_size: int | None = None,
        dp_size: int | None = None,
        pcp_size: int | None = None,
        prefix: str = "",
        custom_routing_function: Callable | None = None,
        scoring_func: str = "softmax",
        routed_scaling_factor: float = 1.0,
        e_score_correction_bias: torch.Tensor | None = None,
        apply_router_weight_on_input: bool = False,
        activation: str = "silu",
        is_act_and_mul: bool = True,
        enable_eplb: bool = False,
        num_redundant_experts: int = 0,
        has_bias: bool = False,
        is_sequence_parallel=False,
        expert_mapping: list[tuple[str, str, int, str]] | None = None,
        n_shared_experts: int | None = None,
        router_logits_dtype: torch.dtype | None = None,
        gate: torch.nn.Module | None = None,
        shared_experts: torch.nn.Module | None = None,
        routed_input_transform: torch.nn.Module | None = None,
    ):
        super().__init__()

        self._gate = gate
        self._shared_experts = shared_experts
        self._routed_input_transform = routed_input_transform

        if params_dtype is None:
            params_dtype = torch.get_default_dtype()
        self.params_dtype = params_dtype

        vllm_config = get_current_vllm_config()
        self.vllm_config = vllm_config

        # FIXME (varun): We should have a better way of inferring the activation
        # datatype. This works for now as the tensor datatype entering the MoE
        # operation is typically unquantized (i.e. float16/bfloat16).
        if vllm_config.model_config is not None:
            moe_in_dtype = vllm_config.model_config.dtype
        else:
            # TODO (bnell): This is a hack to get test_mixtral_moe to work
            # since model_config is not set in the pytest test.
            moe_in_dtype = params_dtype

        tp_size_ = (
            tp_size if tp_size is not None else get_tensor_model_parallel_world_size()
        )
        dp_size_ = dp_size if dp_size is not None else get_dp_group().world_size
        pcp_size_ = pcp_size if pcp_size is not None else get_pcp_group().world_size

        self.is_sequence_parallel = is_sequence_parallel
        self.sp_size = tp_size_ if is_sequence_parallel else 1

        self.moe_parallel_config: FusedMoEParallelConfig = FusedMoEParallelConfig.make(
            tp_size_=tp_size_,
            pcp_size_=pcp_size_,
            dp_size_=dp_size_,
            sp_size_=self.sp_size,
            vllm_parallel_config=vllm_config.parallel_config,
        )

        assert self.moe_parallel_config.is_sequence_parallel == is_sequence_parallel

        self.global_num_experts = num_experts + num_redundant_experts
        self.logical_num_experts = num_experts

        # Expert mapping used in self.load_weights
        self.expert_mapping = expert_mapping

        # For smuggling this layer into the fused moe custom op
        compilation_config = vllm_config.compilation_config
        if prefix in compilation_config.static_forward_context:
            raise ValueError("Duplicate layer name: {}".format(prefix))
        compilation_config.static_forward_context[prefix] = self
        compilation_config.static_all_moe_layers.append(prefix)
        self.layer_name = prefix

        self.enable_eplb = enable_eplb
        # TODO(bnell): should this be owned by router?
        self.eplb_state = EplbLayerState()
        self.expert_placement_strategy: ExpertPlacementStrategy = (
            vllm_config.parallel_config.expert_placement_strategy
        )

        # ROCm aiter shared experts fusion
        # AITER only supports gated activations (silu/gelu), so disable it
        # for non-gated MoE (is_act_and_mul=False)
        self.rocm_aiter_fmoe_enabled = (
            rocm_aiter_ops.is_fused_moe_enabled() and is_act_and_mul
        )
        self.aiter_fmoe_shared_expert_enabled = (
            rocm_aiter_ops.is_fusion_moe_shared_experts_enabled() and is_act_and_mul
        )

        self.num_fused_shared_experts = (
            n_shared_experts
            if n_shared_experts is not None and self.aiter_fmoe_shared_expert_enabled
            else 0
        )
        if (
            not self.aiter_fmoe_shared_expert_enabled
            and self.num_fused_shared_experts != 0
        ):
            raise ValueError(
                "n_shared_experts is only supported on ROCm aiter when "
                "VLLM_ROCM_USE_AITER_FUSION_SHARED_EXPERTS is enabled"
            )

        # Determine expert maps
        if self.use_ep:
            if self.enable_eplb:
                assert self.global_num_experts % self.ep_size == 0, (
                    "EPLB currently only supports even distribution of "
                    "experts across ranks."
                )
            else:
                assert num_redundant_experts == 0, (
                    "Redundant experts are only supported with EPLB."
                )

            self.expert_placement_strategy = determine_expert_placement_strategy(
                expert_placement_strategy=self.expert_placement_strategy,
                moe_parallel_config=self.moe_parallel_config,
                num_expert_group=num_expert_group,
                num_redundant_experts=num_redundant_experts,
                enable_eplb=self.enable_eplb,
            )

            self._expert_map: torch.Tensor | None
            local_num_experts, expert_map, expert_mask = determine_expert_map(
                ep_size=self.ep_size,
                ep_rank=self.ep_rank,
                global_num_experts=self.global_num_experts,
                expert_placement_strategy=self.expert_placement_strategy,
                num_fused_shared_experts=self.num_fused_shared_experts,
                return_expert_mask=self.rocm_aiter_fmoe_enabled,
            )
            self.local_num_experts = local_num_experts
            self.register_buffer("_expert_map", expert_map)
            self.register_buffer("expert_mask", expert_mask)
            self._maybe_init_expert_routing_tables()
            logger.info_once(
                "[EP Rank %s/%s] Expert parallelism is enabled. Expert "
                "placement strategy: %s. Local/global"
                " number of experts: %s/%s. Experts local to global index map:"
                " %s.",
                self.ep_rank,
                self.ep_size,
                self.expert_placement_strategy,
                self.local_num_experts,
                self.global_num_experts,
                get_compressed_expert_map(self._expert_map),
            )
        else:
            self.local_num_experts, self._expert_map, self.expert_mask = (
                self.global_num_experts,
                None,
                None,
            )

        self.top_k = top_k

        self._init_aiter_shared_experts_topK_buffer(
            vllm_config=vllm_config, dp_size=dp_size_
        )
        if self.use_ep and self.rocm_aiter_fmoe_enabled:
            assert self.expert_mask is None or torch.all(
                (expert_mask == 0) | (expert_mask == 1)
            ), "Aiter Fused MoE kernel only supports expert_map with 0 and 1s."

        assert intermediate_size % self.tp_size == 0
        self.intermediate_size_per_partition = intermediate_size // self.tp_size
        self.reduce_results = reduce_results
        self.renormalize = renormalize

        # TODO(bnell): these attributes are only used by monolithic kernels.
        # Put them in a MoERouterConfig dataclass?
        self.use_grouped_topk = use_grouped_topk
        if self.use_grouped_topk:
            assert num_expert_group is not None and topk_group is not None
        self.num_expert_group = num_expert_group
        self.topk_group = topk_group
        self.custom_routing_function = custom_routing_function
        self.scoring_func = scoring_func
        self.routed_scaling_factor = routed_scaling_factor
        self.e_score_correction_bias = e_score_correction_bias
        # TODO(bnell): end attributes

        self.apply_router_weight_on_input = apply_router_weight_on_input
        self.activation = MoEActivation.from_str(activation)

        self.router = create_fused_moe_router(
            top_k=top_k,
            global_num_experts=self.global_num_experts,
            eplb_state=self.eplb_state,
            renormalize=renormalize,
            use_grouped_topk=use_grouped_topk,
            num_expert_group=num_expert_group,
            topk_group=topk_group,
            custom_routing_function=custom_routing_function,
            scoring_func=scoring_func,
            routed_scaling_factor=routed_scaling_factor,
            e_score_correction_bias=e_score_correction_bias,
            num_fused_shared_experts=self.num_fused_shared_experts,
            enable_eplb=enable_eplb,
            # TODO(bnell): once we can construct the MK at init time, we
            # can make this a value.
            indices_type_getter=lambda: self.quant_method.topk_indices_dtype,
        )
        self.routing_method_type: RoutingMethodType = self.router.routing_method_type

        # Round up hidden size before creating moe_config.
        # This way moe_config is created with the correct hidden_size from the start.
        hidden_size = maybe_roundup_hidden_size(
            hidden_size=hidden_size,
            act_dtype=moe_in_dtype,
            moe_parallel_config=self.moe_parallel_config,
            is_lora_enabled=vllm_config.lora_config is not None,
            model_type=(
                self.vllm_config.model_config.hf_config.model_type
                if self.vllm_config.model_config is not None
                else None
            ),
            is_mxfp4_quant=(
                quant_config is not None and quant_config.is_mxfp4_quant(prefix, self)
            ),
        )
        self.hidden_size = hidden_size

        self.moe_config: FusedMoEConfig = FusedMoEConfig(
            num_experts=self.global_num_experts,
            experts_per_token=top_k,
            hidden_dim=hidden_size,
            intermediate_size_per_partition=self.intermediate_size_per_partition,
            num_local_experts=self.local_num_experts,
            num_logical_experts=self.logical_num_experts,
            moe_parallel_config=self.moe_parallel_config,
            in_dtype=moe_in_dtype,
            router_logits_dtype=router_logits_dtype,
            max_num_tokens=envs.VLLM_MOE_DP_CHUNK_SIZE,
            has_bias=has_bias,
            is_act_and_mul=is_act_and_mul,
            is_lora_enabled=vllm_config.lora_config is not None,
            activation=self.activation,
            device=vllm_config.device_config.device,
            routing_method=self.routing_method_type,
            # TODO: in_dtype == out_dtype?
            disable_inplace=disable_inplace() or self._shared_experts is not None,
        )
        if self.moe_config.use_mori_kernels:
            assert self.rocm_aiter_fmoe_enabled, (
                "Mori needs to be used with aiter fused_moe for now."
            )
            assert not self.aiter_fmoe_shared_expert_enabled, (
                "Mori does not support fusion shared expert now. "
                "Turn it off by setting VLLM_ROCM_USE_AITER_FUSION_SHARED_EXPERTS=0"
            )

        self.quant_config = quant_config

        def _get_quant_method() -> FusedMoEMethodBase:
            """
            Helper method to ensure self.quant_method is never None and
            of the proper type.
            """
            quant_method = None
            if self.quant_config is not None:
                quant_method = self.quant_config.get_quant_method(self, prefix)
            if quant_method is None:
                quant_method = UnquantizedFusedMoEMethod(self.moe_config)
            assert isinstance(quant_method, FusedMoEMethodBase)
            return quant_method

        # Note: get_quant_method will look at the layer's local_num_experts
        # for heuristic purposes, so it must be initialized first.
        self.quant_method: FusedMoEMethodBase = _get_quant_method()

        if not self.moe_config.is_act_and_mul and not current_platform.is_cuda_alike():
            raise NotImplementedError(
                "is_act_and_mul=False is supported only for CUDA and ROCm for now"
            )

        if self.enable_eplb and not self.quant_method.supports_eplb:
            # TODO: Add support for additional quantization methods.
            # The implementation for other quantization methods does not
            # contain essential differences, but the current quant API
            # design causes duplicated work when extending to new
            # quantization methods, so I'm leaving it for now.
            # If you plan to add support for more quantization methods,
            # please refer to the implementation in `Fp8MoEMethod`.
            raise NotImplementedError(
                f"EPLB is not supported {self.quant_method.__class__.__name__}."
            )

        moe_quant_params = {
            "num_experts": self.local_num_experts,
            "hidden_size": hidden_size,
            "intermediate_size_per_partition": self.intermediate_size_per_partition,
            "params_dtype": params_dtype,
            "weight_loader": self.weight_loader,
            "global_num_experts": self.global_num_experts,
        }
        # need full intermediate size pre-sharding for WNA16 act order
        if self.quant_method.__class__.__name__ in (
            "GPTQMarlinMoEMethod",
            "CompressedTensorsWNA16MarlinMoEMethod",
            "CompressedTensorsWNA16MoEMethod",
        ):
            moe_quant_params["intermediate_size_full"] = intermediate_size

        self.quant_method.create_weights(layer=self, **moe_quant_params)

        # Disable shared expert overlap if:
        #   - we are using eplb with non-default backend, because of correctness issues
        #   - we are using flashinfer with DP, since there nothing to gain
        #   - we are using marlin kernels
        backend = self.moe_parallel_config.all2all_backend
        self.use_overlapped = (
            not (
                (self.enable_eplb and backend != "allgather_reducescatter")
                or self.moe_parallel_config.use_fi_all2allv_kernels
            )
            and self._shared_experts is not None
        )

        self.runner = self._init_runner()

    def _init_runner(self):
        # Storing the runner in the FusedMoE is an intermediate state, eventually
        # the runner will own the FusedMoE layer and provide the execution interface
        # for MoE ops.
        return DefaultMoERunner(
            layer=self,
            moe_config=self.moe_config,
            router=self.router,
            routed_input_transform=self._routed_input_transform,
            gate=self.gate,
            shared_experts=self.shared_experts,
            quant_method=self.quant_method,
            reduce_results=self.reduce_results,
            enable_dbo=self.vllm_config.parallel_config.enable_dbo,
        )

    # Note: maybe_init_modular_kernel should only be called by
    # prepare_communication_buffer_for_model.
    # This is called after all weight loading and post-processing, so it
    # should be safe to swap out the quant_method.
    def maybe_init_modular_kernel(self) -> None:
        # NOTE(rob): WIP refactor. For quant methods that own the MK
        # we create the MK during process_weights_after_loading.
        if self.quant_method.supports_internal_mk or self.quant_method.is_monolithic:
            return None

        self.ensure_moe_quant_config_init()
        # routing_tables only needed for round-robin expert placement with
        # DeepEP all2all backend.
        routing_tables = self._maybe_init_expert_routing_tables()
        prepare_finalize = self.quant_method.maybe_make_prepare_finalize(
            routing_tables=routing_tables
        )
        if prepare_finalize is not None:
            logger.debug(
                "%s for %s(%s)", prepare_finalize.__class__.__name__, self, id(self)
            )
            self.quant_method = FusedMoEModularMethod.make(
                self,
                self.quant_method,
                prepare_finalize,
                self.shared_experts,
                inplace=not self.moe_config.disable_inplace,
            )
            # We need to force reconstruction of runner because we're swapping out
            # the quant_method with a FusedMoEModularMethod. This logic can go
            # away once the FusedMoEModularMethod is eliminated.
            self.runner = self._init_runner()

    @property
    def shared_experts(self) -> torch.nn.Module | None:
        return self._shared_experts if self.use_overlapped else None

    @property
    def layer_id(self):
        # Delayed import to avoid circular dependency
        from vllm.model_executor.models.utils import extract_layer_index

        return extract_layer_index(self.layer_name)

    @property
    def gate(self) -> torch.nn.Module | None:
        return self._gate if self.use_overlapped else None

    @property
    def tp_size(self):
        return self.moe_parallel_config.tp_size

    @property
    def ep_size(self):
        return self.moe_parallel_config.ep_size

    @property
    def tp_rank(self):
        return self.moe_parallel_config.tp_rank

    @property
    def ep_rank(self):
        return self.moe_parallel_config.ep_rank

    @property
    def use_ep(self):
        return self.moe_parallel_config.use_ep

    @property
    def is_internal_router(self) -> bool:
        # By default, router/gate is called before FusedMoE forward pass
        return self.gate is not None

    def _maybe_init_expert_routing_tables(
        self,
    ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor] | None:
        # Currently routing_tables only needed for round-robin expert placement
        # with DeepEP-ll all2all backend.
        if (
            self.expert_placement_strategy != "round_robin"
            or not self.moe_parallel_config.use_deepep_ll_kernels
        ):
            return None

        if hasattr(self, "expert_global_to_physical"):
            return cast(
                tuple[torch.Tensor, torch.Tensor, torch.Tensor],
                (
                    self.expert_global_to_physical,
                    self.expert_physical_to_global,
                    self.expert_local_to_global,
                ),
            )

        if self._expert_map is None:
            return None

        routing_tables = self.ensure_round_robin_expert_routing_tables(
            global_num_experts=self.global_num_experts,
            ep_size=self.ep_size,
            ep_rank=self.ep_rank,
            local_num_experts=self.local_num_experts,
            device=self._expert_map.device,
        )

        global_to_physical, physical_to_global, local_global = routing_tables
        self.register_buffer("expert_global_to_physical", global_to_physical)
        self.register_buffer("expert_physical_to_global", physical_to_global)
        self.register_buffer("expert_local_to_global", local_global)

        return routing_tables

    @staticmethod
    def ensure_round_robin_expert_routing_tables(
        global_num_experts: int,
        ep_size: int,
        ep_rank: int,
        local_num_experts: int,
        device: torch.device | None = None,
    ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        device_kwargs = {"device": device} if device is not None else {}
        global_indices = torch.arange(
            global_num_experts, dtype=torch.long, **device_kwargs
        )
        owner = torch.remainder(global_indices, ep_size)
        local_index = torch.div(global_indices, ep_size, rounding_mode="floor")
        base = global_num_experts // ep_size
        remainder = global_num_experts % ep_size
        physical_offset = owner * base
        if remainder > 0:
            remainder_tensor = torch.tensor(
                remainder, dtype=torch.long, **device_kwargs
            )
            physical_offset = physical_offset + torch.minimum(owner, remainder_tensor)

        global_to_physical = physical_offset + local_index
        physical_to_global = torch.empty_like(global_to_physical)
        physical_to_global[global_to_physical] = global_indices

        local_global = torch.arange(
            ep_rank,
            global_num_experts,
            ep_size,
            dtype=torch.long,
            **device_kwargs,
        )
        if local_global.numel() != local_num_experts:
            local_global = local_global[:local_num_experts]

        return (global_to_physical, physical_to_global, local_global)

    def update_expert_map(self):
        # ep_size and ep_rank should already be updated
        assert self._expert_map is not None
        with self._expert_map.device:
            local_num_experts, expert_map, expert_mask = determine_expert_map(
                ep_size=self.ep_size,
                ep_rank=self.ep_rank,
                global_num_experts=self.global_num_experts,
                expert_placement_strategy=self.expert_placement_strategy,
                num_fused_shared_experts=self.num_fused_shared_experts,
                return_expert_mask=self.rocm_aiter_fmoe_enabled,
            )
            self.local_num_experts = local_num_experts
            self.register_buffer("_expert_map", expert_map)
            self.register_buffer("expert_mask", expert_mask)
            self._maybe_init_expert_routing_tables()
            if self.aiter_fmoe_shared_expert_enabled:
                self._init_aiter_shared_experts_topK_buffer(
                    vllm_config=get_current_vllm_config(),
                    dp_size=get_dp_group().world_size,
                )

    def _load_per_tensor_weight_scale(
        self,
        shard_id: str,
        param: torch.nn.Parameter,
        loaded_weight: torch.Tensor,
        expert_id: int,
    ):
        param_data = param.data
        # for per tensor weight quantization
        if shard_id in ("w1", "w3"):
            # We have to keep the weight scales of w1 and w3 because
            # we need to re-quantize w1/w3 weights after weight loading.
            idx = 0 if shard_id == "w1" else 1
            param_data[expert_id][idx] = loaded_weight
        # If we are in the row parallel case (down_proj)
        elif shard_id == "w2":
            param_data[expert_id] = loaded_weight

    def _load_combined_w13_weight_scale(
        self,
        shard_dim: int,
        loaded_weight: torch.Tensor,
        param: torch.Tensor,
        tp_rank: int,
    ):
        """
        Load w13 weight scales assuming that w1 weight scales and w3 weight
        scales are stored in the same loaded_weight tensor.
        """
        shard_size = param.shape[shard_dim]
        loaded_weight = loaded_weight.narrow(
            shard_dim, shard_size * tp_rank, shard_size
        )
        param.copy_(loaded_weight)

    def _load_model_weight_or_group_weight_scale(
        self,
        shard_dim: int,
        expert_data: torch.Tensor,
        shard_id: str,
        loaded_weight: torch.Tensor,
        tp_rank: int,
        load_full_w2: bool = False,
    ):
        """
        Load grouped weight scales for group quantization or model weights
            :param shard_dim: dimension to shard
            :param expert_data: parameter for a particular expert
            :param shard_id: either w1, w2, or w3
            :param loaded_weight: checkpoint weight to load into the param
            :param tp_rank: tensor parallel rank
            :param load_full_w2: whether or not the w2 loaded should be sharded.
        """
        if shard_id == "w2":
            # In the case where we have actorder/g_idx, we do not partition the
            # w2 scales, as indicated by `load_full` argument, for all tp cases
            self._load_w2(
                shard_dim=shard_dim,
                loaded_weight=loaded_weight,
                expert_data=expert_data,
                tp_rank=tp_rank,
                load_full=load_full_w2,
            )
        elif shard_id in ("w1", "w3"):
            self._load_w13(
                shard_id=shard_id,
                shard_dim=shard_dim,
                loaded_weight=loaded_weight,
                expert_data=expert_data,
                tp_rank=tp_rank,
            )

    def _load_per_channel_weight_scale(
        self,
        expert_data: torch.Tensor,
        shard_dim: int,
        shard_id: str,
        loaded_weight: torch.Tensor,
        tp_rank: int,
    ):
        # for per channel weight quantization
        if shard_id == "w2":
            expert_data.copy_(loaded_weight)
        elif shard_id in ("w1", "w3"):
            self._load_w13(
                shard_id=shard_id,
                shard_dim=shard_dim,
                loaded_weight=loaded_weight,
                expert_data=expert_data,
                tp_rank=tp_rank,
            )

    def _load_w13(
        self,
        expert_data: torch.Tensor,
        shard_dim: int,
        shard_id: str,
        loaded_weight: torch.Tensor,
        tp_rank: int,
        load_full: bool = False,
    ):
        # Index the loaded weight for tp sharding.
        # gate_up_proj: "MergedColumnParallel", so tp sharding on output_dim
        if self.moe_config.is_act_and_mul:
            shard_size = expert_data.shape[shard_dim] // 2
        else:
            shard_size = expert_data.shape[shard_dim]
        # Only narrow if the loaded_weight is not a scalar (0-dim tensor)
        # and we're not loading the full weight
        if not load_full and loaded_weight.ndim > 0:
            loaded_weight = loaded_weight.narrow(
                shard_dim, shard_size * tp_rank, shard_size
            )
        # Narrow parameter and load.
        # w1, gate_proj: Load into first logical weight of w13.
        if shard_id == "w1":
            expert_data = expert_data.narrow(shard_dim, 0, shard_size)
        # w3, up_proj: Load into second logical weight of w13.
        else:
            assert shard_id == "w3"
            expert_data = expert_data.narrow(shard_dim, shard_size, shard_size)
        expert_data.copy_(loaded_weight)

    def _load_w2(
        self,
        expert_data: torch.Tensor,
        shard_dim: int,
        loaded_weight: torch.Tensor,
        tp_rank: int,
        load_full: bool = False,
    ):
        # Index the loaded weight for tp sharding.
        # down_proj: "RowParallel" so tp sharding on input_dim
        # Narrow parameter and load.
        shard_size = expert_data.shape[shard_dim]
        # Only narrow if the loaded_weight is not a scalar (0-dim tensor)
        # and we're not loading the full weight
        if not load_full and loaded_weight.ndim > 0:
            loaded_weight = loaded_weight.narrow(
                shard_dim, shard_size * tp_rank, shard_size
            )
        # w2, down_proj: Load into only logical weight of w2.
        expert_data.copy_(loaded_weight)

    def _load_single_value(
        self, param: torch.nn.Parameter, loaded_weight: torch.Tensor, expert_id: int
    ):
        param_data = param.data

        # Input scales can be loaded directly and should be equal.
        param_data[expert_id] = loaded_weight

    def _load_g_idx(
        self,
        shard_id: str,
        expert_data: torch.Tensor,
        shard_dim: int,
        loaded_weight: torch.Tensor,
        tp_rank: int,
    ):
        if shard_id == "w2":
            self._load_w2(
                shard_dim=shard_dim,
                loaded_weight=loaded_weight,
                expert_data=expert_data,
                tp_rank=tp_rank,
            )
        else:
            assert shard_id in ("w1", "w3")
            expert_data.copy_(loaded_weight)

    def _map_global_expert_id_to_local_expert_id(self, expert_id: int) -> int:
        if self._expert_map is None:
            return expert_id
        return self._expert_map[expert_id].item()

    def _init_aiter_shared_experts_topK_buffer(
        self, vllm_config: VllmConfig, dp_size: int
    ):
        if self.num_fused_shared_experts > 0:
            init_aiter_topK_meta_data(
                n_routed_experts=self.global_num_experts,
                n_shared_experts=self.num_fused_shared_experts,
                top_k=self.top_k,
                tp_rank=self.ep_rank if self.use_ep else self.tp_rank,
                tp_size=self.ep_size if self.use_ep else self.tp_size,
                shared_experts_score=1.0,
                max_num_tokens=vllm_config.scheduler_config.max_num_batched_tokens
                * dp_size,
                is_EP=self.use_ep,
            )
        self.local_num_experts += self.num_fused_shared_experts

    @overload
    def weight_loader(
        self,
        param: torch.nn.Parameter,
        loaded_weight: torch.Tensor,
        weight_name: str,
        shard_id: str,
        expert_id: int,
        return_success: Literal[False],
    ) -> None: ...

    @overload
    def weight_loader(
        self,
        param: torch.nn.Parameter,
        loaded_weight: torch.Tensor,
        weight_name: str,
        shard_id: str,
        expert_id: int,
        return_success: Literal[True],
    ) -> bool: ...

    def weight_loader(
        self,
        param: torch.nn.Parameter,
        loaded_weight: torch.Tensor,
        weight_name: str,
        shard_id: str,
        expert_id: int,
        return_success: bool = False,
    ) -> bool | None:
        if self.quant_config and self.quant_config.get_name() == "mxfp4":
            # (FIXME) for gpt-oss all experts are combined
            if "bias" in weight_name:
                dim1 = loaded_weight.shape[1]
                param.data[:, :dim1].copy_(loaded_weight)
            else:
                dim1 = loaded_weight.shape[1]
                dim2 = loaded_weight.shape[2]
                param.data[:, :dim1, :dim2].copy_(loaded_weight)
            return True if return_success else None

        quant_method_name = self.quant_method.__class__.__name__
        global_expert_id = expert_id
        expert_id = self._map_global_expert_id_to_local_expert_id(global_expert_id)

        use_global_sf = (
            getattr(self.quant_method, "use_global_sf", False)
            and "input_scale" in weight_name
        )

        if expert_id == -1 and not use_global_sf:
            # Failed to load this param since it's not local to this rank
            return False if return_success else None
        # Hereafter, `expert_id` is local physical id

        # is_transposed: if the dim to shard the weight
        # should be flipped. Required by GPTQ, compressed-tensors
        # should be whatever dimension intermediate_size_per_partition is
        is_transposed = getattr(param, "is_transposed", False)

        # compressed-tensors checkpoints with packed weights are stored flipped
        # TODO (mgoin): check self.quant_method.quant_config.quant_format
        # against known CompressionFormat enum values that have this quality
        if quant_method_name in (
            "CompressedTensorsWNA16MarlinMoEMethod",
            "CompressedTensorsWNA16MoEMethod",
        ):
            if is_transposed:
                loaded_weight = loaded_weight.t().contiguous()
            else:
                loaded_weight = loaded_weight

        if shard_id not in ("w1", "w2", "w3"):
            raise ValueError(f"shard_id must be ['w1','w2','w3'] but got {shard_id}.")

        # Fetch the dim to shard the parameter/loaded weight
        # based on the shard id. This will be whatever
        # dimension intermediate_size_per_partition is used.
        SHARD_ID_TO_SHARDED_DIM = {"w1": 0, "w2": 1, "w3": 0}

        is_gguf_weight = getattr(param, "is_gguf_weight", False)
        is_gguf_weight_type = getattr(param, "is_gguf_weight_type", False)
        if is_gguf_weight_type:
            param.weight_type = loaded_weight.item()
            param.data.copy_(loaded_weight)
            return True if return_success else None

        # Case for BitsAndBytes
        use_bitsandbytes_4bit = getattr(param, "use_bitsandbytes_4bit", False)
        if use_bitsandbytes_4bit:
            shard_dim = 0

            expert_data = param.data[expert_id]
            if shard_id == "w2":
                expert_data.copy_(loaded_weight)
            elif shard_id in ("w1", "w3"):
                # BNB inflight quantization has already sharded the weights
                full_load = True
                self._load_w13(
                    shard_id=shard_id,
                    shard_dim=shard_dim,
                    loaded_weight=loaded_weight,
                    expert_data=expert_data,
                    tp_rank=self.tp_rank,
                    load_full=full_load,
                )
            return True if return_success else None

        shard_dim = SHARD_ID_TO_SHARDED_DIM[shard_id]
        if is_transposed:
            shard_dim = int(not shard_dim)

        full_load = len(loaded_weight.shape) == 3
        if full_load:
            shard_dim += 1

        # Materialize GGUF UninitializedParameter accounting merged weights
        if is_gguf_weight and isinstance(param, UninitializedParameter):
            # To materialize a tensor, we must have full shape including
            # number of experts, making this portion to require `full_load`.
            assert full_load
            final_shape = list(loaded_weight.shape)
            # w1 and w3 are merged per expert.
            if shard_id in {"w1", "w3"}:
                final_shape[1] *= 2
            final_shape[shard_dim] = final_shape[shard_dim] // self.tp_size
            param.materialize(final_shape, dtype=loaded_weight.dtype)

        expert_data = param.data if full_load else param.data[expert_id]

        # Case input scale: input_scale loading is only supported for fp8
        if "input_scale" in weight_name:
            # this is needed for compressed-tensors only
            loaded_weight = loaded_weight.to(param.data.device)

            if (
                "compressed" in quant_method_name.lower()
                and param.data[expert_id] != 1
                and (param.data[expert_id] - loaded_weight).abs() > 1e-5
            ):
                raise ValueError(
                    "input_scales of w1 and w3 of a layer "
                    f"must be equal. But got {param.data[expert_id]} "
                    f"vs. {loaded_weight}"
                )

            self._load_single_value(
                param=param,
                loaded_weight=loaded_weight,
                expert_id=global_expert_id if use_global_sf else expert_id,
            )
            return True if return_success else None

        # Case g_idx
        if "g_idx" in weight_name:
            self._load_g_idx(
                shard_dim=0,
                shard_id=shard_id,
                loaded_weight=loaded_weight,
                expert_data=expert_data,
                tp_rank=self.tp_rank,
            )
            return True if return_success else None

        # TODO @dsikka: ModelOpt should follow the proper MoE loading pattern
        if "ModelOpt" in quant_method_name:
            # Determine per-tensor weight scale patterns based on variant
            # Use the dedicated method instead of brittle string matching
            uses_weight_scale_2 = self.quant_method.uses_weight_scale_2_pattern()

            # Call _load_per_tensor_weight_scale() to load per-tensor (scalar)
            # weights scales.
            # Input scales are always per-tensor.
            # Weight scales: FP4 uses "weight_scale_2" and FP8 uses
            # "weight_scale" for per-tensor scales.
            is_per_tensor = (
                "weight_scale_2" in weight_name
                if uses_weight_scale_2
                else "weight_scale" in weight_name
            ) or "input_scale" in weight_name
            if is_per_tensor:
                self._load_per_tensor_weight_scale(
                    shard_id=shard_id,
                    param=param,
                    loaded_weight=loaded_weight,
                    expert_id=expert_id,
                )
                return True if return_success else None

            # If the weight is w13_weight_scale and w13_weight_scales are
            # combined into single loaded_weight, call
            # _load_combined_w13_weight_scale() to load it.
            # This is checked by comparing the hidden_out dims of the
            # loaded_weight and the param.
            if "w13_weight_scale" in weight_name:
                loaded_weight_hidden_out = loaded_weight.shape[-2]
                param_hidden_out = param.data.shape[-2] * self.tp_size
                if loaded_weight_hidden_out == param_hidden_out:
                    self._load_combined_w13_weight_scale(
                        shard_dim=shard_dim,
                        loaded_weight=loaded_weight,
                        param=expert_data,
                        tp_rank=self.tp_rank,
                    )
                    return True if return_success else None

            # For other weights, call _load_model_weight_or_group_weight_scale()
            # to load it.
            if "weight" in weight_name:
                self._load_model_weight_or_group_weight_scale(
                    shard_id=shard_id,
                    shard_dim=shard_dim,
                    loaded_weight=loaded_weight,
                    expert_data=expert_data,
                    tp_rank=self.tp_rank,
                )
            return True if return_success else None

        # Case weight scales, zero_points and offset, weight/input global scales
        if "scale" in weight_name or "zero" in weight_name or "offset" in weight_name:
            # load the weight scales and zp based on the quantization scheme
            # supported weight scales/zp can be found in
            # FusedMoeWeightScaleSupported
            # TODO @dsikka: once hardened, refactor to use vLLM Parameters
            # specific to each case
            quant_method = getattr(param, "quant_method", None)
            if quant_method == FusedMoeWeightScaleSupported.CHANNEL.value:
                self._load_per_channel_weight_scale(
                    shard_id=shard_id,
                    shard_dim=shard_dim,
                    loaded_weight=loaded_weight,
                    expert_data=expert_data,
                    tp_rank=self.tp_rank,
                )
            elif quant_method in [
                FusedMoeWeightScaleSupported.GROUP.value,
                FusedMoeWeightScaleSupported.BLOCK.value,
            ]:
                self._load_model_weight_or_group_weight_scale(
                    shard_id=shard_id,
                    shard_dim=shard_dim,
                    loaded_weight=loaded_weight,
                    expert_data=expert_data,
                    tp_rank=self.tp_rank,
                    load_full_w2=getattr(param, "load_full_w2", False),
                )
            elif quant_method == FusedMoeWeightScaleSupported.TENSOR.value:
                self._load_per_tensor_weight_scale(
                    shard_id=shard_id,
                    param=param,
                    loaded_weight=loaded_weight,
                    expert_id=expert_id,
                )
            else:
                WEIGHT_SCALE_SUPPORTED = [e.value for e in FusedMoeWeightScaleSupported]
                raise ValueError(
                    f"quant method must be one of {WEIGHT_SCALE_SUPPORTED}"
                )
            return True if return_success else None

        # Case weight_shape
        if "weight_shape" in weight_name:
            # only required by compressed-tensors
            self._load_single_value(
                param=param, loaded_weight=loaded_weight, expert_id=expert_id
            )
            return True if return_success else None

        # Case model weights
        if "weight" in weight_name:
            self._load_model_weight_or_group_weight_scale(
                shard_id=shard_id,
                shard_dim=shard_dim,
                loaded_weight=loaded_weight,
                expert_data=expert_data,
                tp_rank=self.tp_rank,
            )
            return True if return_success else None

        return False if return_success else None

    def load_weights(
        self, weights: Iterable[tuple[str, torch.Tensor]]
    ) -> Iterable[str]:
        if (expert_mapping := self.expert_mapping) is None:
            raise ValueError(
                "`self.expert_mapping` must be provided to "
                "load weights using `self.load_weights`."
            )
        for expert_name, loaded_weight in weights:
            qual_name = f"{self.layer_name}.{expert_name}"
            for param_name, weight_name, expert_id, shard_id in expert_mapping:
                if weight_name not in qual_name:
                    continue
                weight_name = qual_name.replace(weight_name, param_name)
                param_name = weight_name.removeprefix(f"{self.layer_name}.")
                param = getattr(self, param_name)
                success = self.weight_loader(
                    param=param,
                    loaded_weight=loaded_weight,
                    weight_name=weight_name,
                    shard_id=shard_id,
                    expert_id=expert_id,
                    return_success=True,
                )
                if success:
                    logger.debug(
                        "Loaded %s for expert %d into %s",
                        param_name,
                        expert_id,
                        self.layer_name,
                    )
                    yield param_name

    def get_expert_weights(self) -> Iterable[torch.Tensor]:
        def _maybe_make_contiguous(
            name: str, p: torch.nn.Parameter
        ) -> torch.nn.Parameter:
            """
            In some cases, the last 2 dimensions (the non-expert dimensions)
            of the weight scale tensor are transposed. This function
            transforms the tensor (view update) so the tensor is contiguous().
            Example: A non-contiguous scale tensor,
              `x` of shape (E, 32, 16) and stride (512, 1, 32) is transformed to
              `x_` of shape (E, 16, 32) and stride (512, 32, 1).
              Note that we specifically use torch.transpose() so `x_` refers
              to the same underlying memory. The tensors `x` and `x_`, pointing
              to the same underlying memory make this transformation safe in the
              context of EPLB. i.e. It is the same memory and just the view
              is different.
            Note: This function handles the "weight_scale" tensors specifically.
            This could however be generalized to handle similar tensors.
            """
            if p.ndim != 3:
                return p
            if p.is_contiguous():
                # Already contiguous. do nothing.
                return p
            # p is non-contiguous. We only handle the case where the last 2
            # dimensions of the scales tensor is transposed. We can handle
            # other cases when they become relevant.
            is_transposed_12 = p.stride(1) == 1 and p.stride(2) != 1
            if "weight_scale" not in name or not is_transposed_12:
                # do nothing.
                return p

            # Do not update the layer parameter as the layer's MoE operations would
            # expect the parameter's tensor to the same shape / stride. Instead,
            # make a new torch.nn.Parameter that is used just in the context of
            # EPLB.
            return torch.nn.Parameter(
                torch.transpose(p.data, 1, 2), requires_grad=False
            )

        weights = list(self.named_parameters())
        weights = [(name, _maybe_make_contiguous(name, p)) for name, p in weights]

        assert all(
            weight.is_contiguous()
            for name, weight in weights
            if not (name.startswith("_shared_experts.") or name.startswith("_gate."))
        )

        # Filter out the non-expert weights.
        # `e_score_correction_bias` is a bias for each logical expert,
        # with shape (num_logical_experts,), not an expert weight.
        NON_EXPERT_WEIGHTS = {
            "e_score_correction_bias",
        }

        return [
            weight.view(self.local_num_experts, -1)
            for name, weight in weights
            if name not in NON_EXPERT_WEIGHTS
            and weight.shape != torch.Size([])
            and not name.startswith("_shared_experts.")
            # exclude parameters from non-expert submodules (e.g. gate/shared)
            and not name.startswith("_gate.")
        ]

    def set_eplb_state(
        self,
        moe_layer_idx: int,
        expert_load_view: torch.Tensor,
        logical_to_physical_map: torch.Tensor,
        logical_replica_count: torch.Tensor,
    ) -> None:
        """
        Register the EPLB state in this layer.

        This is used later in forward pass, where we get the expert mapping
        and record the load metrics in `expert_load_view`.
        """
        self.eplb_state.expert_load_view = expert_load_view[moe_layer_idx]
        self.eplb_state.logical_to_physical_map = logical_to_physical_map[moe_layer_idx]
        self.eplb_state.logical_replica_count = logical_replica_count[moe_layer_idx]

    def ensure_moe_quant_config_init(self):
        if self.quant_method.moe_quant_config is None:
            # Note: the moe_quant_config can't be constructed until after
            # weight loading post processing.
            self.quant_method.moe_quant_config = (
                self.quant_method.get_fused_moe_quant_config(self)
            )

    @property
    def moe_quant_config(self) -> FusedMoEQuantConfig | None:
        self.ensure_moe_quant_config_init()
        return self.quant_method.moe_quant_config

    def must_reduce_shared_expert_outputs(self) -> bool:
        """
        The shared_experts are typically computed using the RowParallelLinear
        layer. The result of this function is typically used as
        the reduce_results argument to the module.
        When just tensor-parallel is used, it is not required to reduce
        the shared_experts results immediately. Instead we reduce at the
        once at the end of the MoE op. (Refer to DeepSeekV2MoE module)
        With EP and all2all kernels - this is no longer viable as all
        GPU ranks in DP, produce the complete set of hidden_states.
        Therefore it is required that we reduce the shared_experts output
        early.
        """
        return self.runner.must_reduce_shared_expert_outputs()

    def maybe_all_reduce_tensor_model_parallel(self, final_hidden_states: torch.Tensor):
        """
        Some combine kernels reduce across GPU ranks by default.
        """
        return self.runner.maybe_all_reduce_tensor_model_parallel(final_hidden_states)

    def forward_native(
        self,
        hidden_states: torch.Tensor,
        router_logits: torch.Tensor,
    ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
        return self.runner.forward(
            hidden_states,
            router_logits,
        )

    @property
    def expert_map(self) -> torch.Tensor | None:
        return (
            self._expert_map if not self.rocm_aiter_fmoe_enabled else self.expert_mask
        )

    def forward_cuda(
        self,
        hidden_states: torch.Tensor,
        router_logits: torch.Tensor,
    ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
        return self.forward_native(hidden_states, router_logits)

    @classmethod
    def make_expert_params_mapping(
        cls,
        model: torch.nn.Module,
        ckpt_gate_proj_name: str,
        ckpt_down_proj_name: str,
        ckpt_up_proj_name: str,
        num_experts: int,
        num_redundant_experts: int = 0,
    ) -> list[tuple[str, str, int, str]]:
        num_physical_experts = num_experts + num_redundant_experts

        # In the returned mapping:
        # - `expert_id` is the physical expert id
        # - `weight_name` contains the weight name of the logical expert
        # So that we should map the expert id to logical in `weight_name`
        physical_to_logical_map = (
            EplbState.build_initial_global_physical_to_logical_map(
                num_experts, num_redundant_experts
            )
        )

        base_layer = (
            "base_layer."
            if any(".base_layer." in name for name, _ in model.named_parameters())
            else ""
        )

        return [
            # (param_name, weight_name, expert_id, shard_id)
            (
                f"experts.{base_layer}w13_"
                if weight_name in [ckpt_gate_proj_name, ckpt_up_proj_name]
                else f"experts.{base_layer}w2_",
                f"experts.{physical_to_logical_map[expert_id]}.{weight_name}.{base_layer}",
                expert_id,
                shard_id,
            )
            for expert_id in range(num_physical_experts)
            for shard_id, weight_name in [
                ("w1", ckpt_gate_proj_name),
                ("w2", ckpt_down_proj_name),
                ("w3", ckpt_up_proj_name),
            ]
        ]

    def extra_repr(self) -> str:
        s = (
            f"global_num_experts={self.global_num_experts}, "
            f"local_num_experts={self.local_num_experts}, "
            f"top_k={self.top_k}, "
            f"intermediate_size_per_partition={self.intermediate_size_per_partition}, "  # noqa: E501
            f"tp_size={self.tp_size},\n"
            f"ep_size={self.ep_size}, "
            f"reduce_results={self.reduce_results}, "
        )

        return s

__init__

__init__(
    num_experts: int,
    top_k: int,
    hidden_size: int,
    intermediate_size: int,
    params_dtype: dtype | None = None,
    reduce_results: bool = False,
    renormalize: bool = True,
    use_grouped_topk: bool = False,
    num_expert_group: int | None = None,
    topk_group: int | None = None,
    quant_config: QuantizationConfig | None = None,
    tp_size: int | None = None,
    ep_size: int | None = None,
    dp_size: int | None = None,
    pcp_size: int | None = None,
    prefix: str = "",
    custom_routing_function: Callable | None = None,
    scoring_func: str = "softmax",
    routed_scaling_factor: float = 1.0,
    e_score_correction_bias: Tensor | None = None,
    apply_router_weight_on_input: bool = False,
    activation: str = "silu",
    is_act_and_mul: bool = True,
    enable_eplb: bool = False,
    num_redundant_experts: int = 0,
    has_bias: bool = False,
    is_sequence_parallel=False,
    expert_mapping: list[tuple[str, str, int, str]]
    | None = None,
    n_shared_experts: int | None = None,
    router_logits_dtype: dtype | None = None,
    gate: Module | None = None,
    shared_experts: Module | None = None,
    routed_input_transform: Module | None = None,
)
Source code in vllm/model_executor/layers/fused_moe/layer.py
def __init__(
    self,
    num_experts: int,  # Global number of experts
    top_k: int,
    hidden_size: int,
    intermediate_size: int,
    params_dtype: torch.dtype | None = None,
    reduce_results: bool = False,
    renormalize: bool = True,
    use_grouped_topk: bool = False,
    num_expert_group: int | None = None,
    topk_group: int | None = None,
    quant_config: QuantizationConfig | None = None,
    tp_size: int | None = None,
    ep_size: int | None = None,
    dp_size: int | None = None,
    pcp_size: int | None = None,
    prefix: str = "",
    custom_routing_function: Callable | None = None,
    scoring_func: str = "softmax",
    routed_scaling_factor: float = 1.0,
    e_score_correction_bias: torch.Tensor | None = None,
    apply_router_weight_on_input: bool = False,
    activation: str = "silu",
    is_act_and_mul: bool = True,
    enable_eplb: bool = False,
    num_redundant_experts: int = 0,
    has_bias: bool = False,
    is_sequence_parallel=False,
    expert_mapping: list[tuple[str, str, int, str]] | None = None,
    n_shared_experts: int | None = None,
    router_logits_dtype: torch.dtype | None = None,
    gate: torch.nn.Module | None = None,
    shared_experts: torch.nn.Module | None = None,
    routed_input_transform: torch.nn.Module | None = None,
):
    super().__init__()

    self._gate = gate
    self._shared_experts = shared_experts
    self._routed_input_transform = routed_input_transform

    if params_dtype is None:
        params_dtype = torch.get_default_dtype()
    self.params_dtype = params_dtype

    vllm_config = get_current_vllm_config()
    self.vllm_config = vllm_config

    # FIXME (varun): We should have a better way of inferring the activation
    # datatype. This works for now as the tensor datatype entering the MoE
    # operation is typically unquantized (i.e. float16/bfloat16).
    if vllm_config.model_config is not None:
        moe_in_dtype = vllm_config.model_config.dtype
    else:
        # TODO (bnell): This is a hack to get test_mixtral_moe to work
        # since model_config is not set in the pytest test.
        moe_in_dtype = params_dtype

    tp_size_ = (
        tp_size if tp_size is not None else get_tensor_model_parallel_world_size()
    )
    dp_size_ = dp_size if dp_size is not None else get_dp_group().world_size
    pcp_size_ = pcp_size if pcp_size is not None else get_pcp_group().world_size

    self.is_sequence_parallel = is_sequence_parallel
    self.sp_size = tp_size_ if is_sequence_parallel else 1

    self.moe_parallel_config: FusedMoEParallelConfig = FusedMoEParallelConfig.make(
        tp_size_=tp_size_,
        pcp_size_=pcp_size_,
        dp_size_=dp_size_,
        sp_size_=self.sp_size,
        vllm_parallel_config=vllm_config.parallel_config,
    )

    assert self.moe_parallel_config.is_sequence_parallel == is_sequence_parallel

    self.global_num_experts = num_experts + num_redundant_experts
    self.logical_num_experts = num_experts

    # Expert mapping used in self.load_weights
    self.expert_mapping = expert_mapping

    # For smuggling this layer into the fused moe custom op
    compilation_config = vllm_config.compilation_config
    if prefix in compilation_config.static_forward_context:
        raise ValueError("Duplicate layer name: {}".format(prefix))
    compilation_config.static_forward_context[prefix] = self
    compilation_config.static_all_moe_layers.append(prefix)
    self.layer_name = prefix

    self.enable_eplb = enable_eplb
    # TODO(bnell): should this be owned by router?
    self.eplb_state = EplbLayerState()
    self.expert_placement_strategy: ExpertPlacementStrategy = (
        vllm_config.parallel_config.expert_placement_strategy
    )

    # ROCm aiter shared experts fusion
    # AITER only supports gated activations (silu/gelu), so disable it
    # for non-gated MoE (is_act_and_mul=False)
    self.rocm_aiter_fmoe_enabled = (
        rocm_aiter_ops.is_fused_moe_enabled() and is_act_and_mul
    )
    self.aiter_fmoe_shared_expert_enabled = (
        rocm_aiter_ops.is_fusion_moe_shared_experts_enabled() and is_act_and_mul
    )

    self.num_fused_shared_experts = (
        n_shared_experts
        if n_shared_experts is not None and self.aiter_fmoe_shared_expert_enabled
        else 0
    )
    if (
        not self.aiter_fmoe_shared_expert_enabled
        and self.num_fused_shared_experts != 0
    ):
        raise ValueError(
            "n_shared_experts is only supported on ROCm aiter when "
            "VLLM_ROCM_USE_AITER_FUSION_SHARED_EXPERTS is enabled"
        )

    # Determine expert maps
    if self.use_ep:
        if self.enable_eplb:
            assert self.global_num_experts % self.ep_size == 0, (
                "EPLB currently only supports even distribution of "
                "experts across ranks."
            )
        else:
            assert num_redundant_experts == 0, (
                "Redundant experts are only supported with EPLB."
            )

        self.expert_placement_strategy = determine_expert_placement_strategy(
            expert_placement_strategy=self.expert_placement_strategy,
            moe_parallel_config=self.moe_parallel_config,
            num_expert_group=num_expert_group,
            num_redundant_experts=num_redundant_experts,
            enable_eplb=self.enable_eplb,
        )

        self._expert_map: torch.Tensor | None
        local_num_experts, expert_map, expert_mask = determine_expert_map(
            ep_size=self.ep_size,
            ep_rank=self.ep_rank,
            global_num_experts=self.global_num_experts,
            expert_placement_strategy=self.expert_placement_strategy,
            num_fused_shared_experts=self.num_fused_shared_experts,
            return_expert_mask=self.rocm_aiter_fmoe_enabled,
        )
        self.local_num_experts = local_num_experts
        self.register_buffer("_expert_map", expert_map)
        self.register_buffer("expert_mask", expert_mask)
        self._maybe_init_expert_routing_tables()
        logger.info_once(
            "[EP Rank %s/%s] Expert parallelism is enabled. Expert "
            "placement strategy: %s. Local/global"
            " number of experts: %s/%s. Experts local to global index map:"
            " %s.",
            self.ep_rank,
            self.ep_size,
            self.expert_placement_strategy,
            self.local_num_experts,
            self.global_num_experts,
            get_compressed_expert_map(self._expert_map),
        )
    else:
        self.local_num_experts, self._expert_map, self.expert_mask = (
            self.global_num_experts,
            None,
            None,
        )

    self.top_k = top_k

    self._init_aiter_shared_experts_topK_buffer(
        vllm_config=vllm_config, dp_size=dp_size_
    )
    if self.use_ep and self.rocm_aiter_fmoe_enabled:
        assert self.expert_mask is None or torch.all(
            (expert_mask == 0) | (expert_mask == 1)
        ), "Aiter Fused MoE kernel only supports expert_map with 0 and 1s."

    assert intermediate_size % self.tp_size == 0
    self.intermediate_size_per_partition = intermediate_size // self.tp_size
    self.reduce_results = reduce_results
    self.renormalize = renormalize

    # TODO(bnell): these attributes are only used by monolithic kernels.
    # Put them in a MoERouterConfig dataclass?
    self.use_grouped_topk = use_grouped_topk
    if self.use_grouped_topk:
        assert num_expert_group is not None and topk_group is not None
    self.num_expert_group = num_expert_group
    self.topk_group = topk_group
    self.custom_routing_function = custom_routing_function
    self.scoring_func = scoring_func
    self.routed_scaling_factor = routed_scaling_factor
    self.e_score_correction_bias = e_score_correction_bias
    # TODO(bnell): end attributes

    self.apply_router_weight_on_input = apply_router_weight_on_input
    self.activation = MoEActivation.from_str(activation)

    self.router = create_fused_moe_router(
        top_k=top_k,
        global_num_experts=self.global_num_experts,
        eplb_state=self.eplb_state,
        renormalize=renormalize,
        use_grouped_topk=use_grouped_topk,
        num_expert_group=num_expert_group,
        topk_group=topk_group,
        custom_routing_function=custom_routing_function,
        scoring_func=scoring_func,
        routed_scaling_factor=routed_scaling_factor,
        e_score_correction_bias=e_score_correction_bias,
        num_fused_shared_experts=self.num_fused_shared_experts,
        enable_eplb=enable_eplb,
        # TODO(bnell): once we can construct the MK at init time, we
        # can make this a value.
        indices_type_getter=lambda: self.quant_method.topk_indices_dtype,
    )
    self.routing_method_type: RoutingMethodType = self.router.routing_method_type

    # Round up hidden size before creating moe_config.
    # This way moe_config is created with the correct hidden_size from the start.
    hidden_size = maybe_roundup_hidden_size(
        hidden_size=hidden_size,
        act_dtype=moe_in_dtype,
        moe_parallel_config=self.moe_parallel_config,
        is_lora_enabled=vllm_config.lora_config is not None,
        model_type=(
            self.vllm_config.model_config.hf_config.model_type
            if self.vllm_config.model_config is not None
            else None
        ),
        is_mxfp4_quant=(
            quant_config is not None and quant_config.is_mxfp4_quant(prefix, self)
        ),
    )
    self.hidden_size = hidden_size

    self.moe_config: FusedMoEConfig = FusedMoEConfig(
        num_experts=self.global_num_experts,
        experts_per_token=top_k,
        hidden_dim=hidden_size,
        intermediate_size_per_partition=self.intermediate_size_per_partition,
        num_local_experts=self.local_num_experts,
        num_logical_experts=self.logical_num_experts,
        moe_parallel_config=self.moe_parallel_config,
        in_dtype=moe_in_dtype,
        router_logits_dtype=router_logits_dtype,
        max_num_tokens=envs.VLLM_MOE_DP_CHUNK_SIZE,
        has_bias=has_bias,
        is_act_and_mul=is_act_and_mul,
        is_lora_enabled=vllm_config.lora_config is not None,
        activation=self.activation,
        device=vllm_config.device_config.device,
        routing_method=self.routing_method_type,
        # TODO: in_dtype == out_dtype?
        disable_inplace=disable_inplace() or self._shared_experts is not None,
    )
    if self.moe_config.use_mori_kernels:
        assert self.rocm_aiter_fmoe_enabled, (
            "Mori needs to be used with aiter fused_moe for now."
        )
        assert not self.aiter_fmoe_shared_expert_enabled, (
            "Mori does not support fusion shared expert now. "
            "Turn it off by setting VLLM_ROCM_USE_AITER_FUSION_SHARED_EXPERTS=0"
        )

    self.quant_config = quant_config

    def _get_quant_method() -> FusedMoEMethodBase:
        """
        Helper method to ensure self.quant_method is never None and
        of the proper type.
        """
        quant_method = None
        if self.quant_config is not None:
            quant_method = self.quant_config.get_quant_method(self, prefix)
        if quant_method is None:
            quant_method = UnquantizedFusedMoEMethod(self.moe_config)
        assert isinstance(quant_method, FusedMoEMethodBase)
        return quant_method

    # Note: get_quant_method will look at the layer's local_num_experts
    # for heuristic purposes, so it must be initialized first.
    self.quant_method: FusedMoEMethodBase = _get_quant_method()

    if not self.moe_config.is_act_and_mul and not current_platform.is_cuda_alike():
        raise NotImplementedError(
            "is_act_and_mul=False is supported only for CUDA and ROCm for now"
        )

    if self.enable_eplb and not self.quant_method.supports_eplb:
        # TODO: Add support for additional quantization methods.
        # The implementation for other quantization methods does not
        # contain essential differences, but the current quant API
        # design causes duplicated work when extending to new
        # quantization methods, so I'm leaving it for now.
        # If you plan to add support for more quantization methods,
        # please refer to the implementation in `Fp8MoEMethod`.
        raise NotImplementedError(
            f"EPLB is not supported {self.quant_method.__class__.__name__}."
        )

    moe_quant_params = {
        "num_experts": self.local_num_experts,
        "hidden_size": hidden_size,
        "intermediate_size_per_partition": self.intermediate_size_per_partition,
        "params_dtype": params_dtype,
        "weight_loader": self.weight_loader,
        "global_num_experts": self.global_num_experts,
    }
    # need full intermediate size pre-sharding for WNA16 act order
    if self.quant_method.__class__.__name__ in (
        "GPTQMarlinMoEMethod",
        "CompressedTensorsWNA16MarlinMoEMethod",
        "CompressedTensorsWNA16MoEMethod",
    ):
        moe_quant_params["intermediate_size_full"] = intermediate_size

    self.quant_method.create_weights(layer=self, **moe_quant_params)

    # Disable shared expert overlap if:
    #   - we are using eplb with non-default backend, because of correctness issues
    #   - we are using flashinfer with DP, since there nothing to gain
    #   - we are using marlin kernels
    backend = self.moe_parallel_config.all2all_backend
    self.use_overlapped = (
        not (
            (self.enable_eplb and backend != "allgather_reducescatter")
            or self.moe_parallel_config.use_fi_all2allv_kernels
        )
        and self._shared_experts is not None
    )

    self.runner = self._init_runner()

_load_combined_w13_weight_scale

_load_combined_w13_weight_scale(
    shard_dim: int,
    loaded_weight: Tensor,
    param: Tensor,
    tp_rank: int,
)

Load w13 weight scales assuming that w1 weight scales and w3 weight scales are stored in the same loaded_weight tensor.

Source code in vllm/model_executor/layers/fused_moe/layer.py
def _load_combined_w13_weight_scale(
    self,
    shard_dim: int,
    loaded_weight: torch.Tensor,
    param: torch.Tensor,
    tp_rank: int,
):
    """
    Load w13 weight scales assuming that w1 weight scales and w3 weight
    scales are stored in the same loaded_weight tensor.
    """
    shard_size = param.shape[shard_dim]
    loaded_weight = loaded_weight.narrow(
        shard_dim, shard_size * tp_rank, shard_size
    )
    param.copy_(loaded_weight)

_load_model_weight_or_group_weight_scale

_load_model_weight_or_group_weight_scale(
    shard_dim: int,
    expert_data: Tensor,
    shard_id: str,
    loaded_weight: Tensor,
    tp_rank: int,
    load_full_w2: bool = False,
)

Load grouped weight scales for group quantization or model weights :param shard_dim: dimension to shard :param expert_data: parameter for a particular expert :param shard_id: either w1, w2, or w3 :param loaded_weight: checkpoint weight to load into the param :param tp_rank: tensor parallel rank :param load_full_w2: whether or not the w2 loaded should be sharded.

Source code in vllm/model_executor/layers/fused_moe/layer.py
def _load_model_weight_or_group_weight_scale(
    self,
    shard_dim: int,
    expert_data: torch.Tensor,
    shard_id: str,
    loaded_weight: torch.Tensor,
    tp_rank: int,
    load_full_w2: bool = False,
):
    """
    Load grouped weight scales for group quantization or model weights
        :param shard_dim: dimension to shard
        :param expert_data: parameter for a particular expert
        :param shard_id: either w1, w2, or w3
        :param loaded_weight: checkpoint weight to load into the param
        :param tp_rank: tensor parallel rank
        :param load_full_w2: whether or not the w2 loaded should be sharded.
    """
    if shard_id == "w2":
        # In the case where we have actorder/g_idx, we do not partition the
        # w2 scales, as indicated by `load_full` argument, for all tp cases
        self._load_w2(
            shard_dim=shard_dim,
            loaded_weight=loaded_weight,
            expert_data=expert_data,
            tp_rank=tp_rank,
            load_full=load_full_w2,
        )
    elif shard_id in ("w1", "w3"):
        self._load_w13(
            shard_id=shard_id,
            shard_dim=shard_dim,
            loaded_weight=loaded_weight,
            expert_data=expert_data,
            tp_rank=tp_rank,
        )

maybe_all_reduce_tensor_model_parallel

maybe_all_reduce_tensor_model_parallel(
    final_hidden_states: Tensor,
)

Some combine kernels reduce across GPU ranks by default.

Source code in vllm/model_executor/layers/fused_moe/layer.py
def maybe_all_reduce_tensor_model_parallel(self, final_hidden_states: torch.Tensor):
    """
    Some combine kernels reduce across GPU ranks by default.
    """
    return self.runner.maybe_all_reduce_tensor_model_parallel(final_hidden_states)

must_reduce_shared_expert_outputs

must_reduce_shared_expert_outputs() -> bool

The shared_experts are typically computed using the RowParallelLinear layer. The result of this function is typically used as the reduce_results argument to the module. When just tensor-parallel is used, it is not required to reduce the shared_experts results immediately. Instead we reduce at the once at the end of the MoE op. (Refer to DeepSeekV2MoE module) With EP and all2all kernels - this is no longer viable as all GPU ranks in DP, produce the complete set of hidden_states. Therefore it is required that we reduce the shared_experts output early.

Source code in vllm/model_executor/layers/fused_moe/layer.py
def must_reduce_shared_expert_outputs(self) -> bool:
    """
    The shared_experts are typically computed using the RowParallelLinear
    layer. The result of this function is typically used as
    the reduce_results argument to the module.
    When just tensor-parallel is used, it is not required to reduce
    the shared_experts results immediately. Instead we reduce at the
    once at the end of the MoE op. (Refer to DeepSeekV2MoE module)
    With EP and all2all kernels - this is no longer viable as all
    GPU ranks in DP, produce the complete set of hidden_states.
    Therefore it is required that we reduce the shared_experts output
    early.
    """
    return self.runner.must_reduce_shared_expert_outputs()

set_eplb_state

set_eplb_state(
    moe_layer_idx: int,
    expert_load_view: Tensor,
    logical_to_physical_map: Tensor,
    logical_replica_count: Tensor,
) -> None

Register the EPLB state in this layer.

This is used later in forward pass, where we get the expert mapping and record the load metrics in expert_load_view.

Source code in vllm/model_executor/layers/fused_moe/layer.py
def set_eplb_state(
    self,
    moe_layer_idx: int,
    expert_load_view: torch.Tensor,
    logical_to_physical_map: torch.Tensor,
    logical_replica_count: torch.Tensor,
) -> None:
    """
    Register the EPLB state in this layer.

    This is used later in forward pass, where we get the expert mapping
    and record the load metrics in `expert_load_view`.
    """
    self.eplb_state.expert_load_view = expert_load_view[moe_layer_idx]
    self.eplb_state.logical_to_physical_map = logical_to_physical_map[moe_layer_idx]
    self.eplb_state.logical_replica_count = logical_replica_count[moe_layer_idx]

FusedMoEActivationFormat

Bases: Enum

The standard activation format (num_tokens, hidden dim).

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
class FusedMoEActivationFormat(Enum):
    """
    The standard activation format (num_tokens, hidden dim).
    """

    Standard = ("standard",)
    """
    The batched experts format (num experts, max tokens per expert, hidden dim)
    """
    BatchedExperts = ("batched_experts",)

Standard class-attribute instance-attribute

Standard = ('standard',)

The batched experts format (num experts, max tokens per expert, hidden dim)

FusedMoEMethodBase

Bases: QuantizeMethodBase

Source code in vllm/model_executor/layers/fused_moe/fused_moe_method_base.py
class FusedMoEMethodBase(QuantizeMethodBase):
    def __init__(self, moe: FusedMoEConfig):
        super().__init__()
        self.moe: FusedMoEConfig = moe
        self.moe_quant_config: FusedMoEQuantConfig | None = None
        self.moe_mk: mk.FusedMoEModularKernel | None = None

    @property
    def supports_internal_mk(self) -> bool:
        # NOTE(rob): temporary attribute to indicate support for
        # completed migration to the new internal MK interface.
        return self.moe_mk is not None

    @property
    def mk_owns_shared_expert(self) -> bool:
        # NOTE(rob): temporary attribute to indicate support for
        # completed migration to the new internal MK interface.
        return self.moe_mk is not None and self.moe_mk.shared_experts is not None

    @abstractmethod
    def create_weights(
        self,
        layer: torch.nn.Module,
        num_experts: int,
        hidden_size: int,
        intermediate_size_per_partition: int,
        params_dtype: torch.dtype,
        **extra_weight_attrs,
    ):
        raise NotImplementedError

    def uses_weight_scale_2_pattern(self) -> bool:
        """
        Returns True if this quantization method uses 'weight_scale_2' pattern
        for per-tensor weight scales (e.g., FP4 variants), False otherwise.

        This method should be overridden by subclasses that use the
        'weight_scale_2' pattern instead of the standard 'weight_scale' pattern.
        """
        return False

    def maybe_make_prepare_finalize(
        self,
        routing_tables: tuple[torch.Tensor, torch.Tensor, torch.Tensor] | None = None,
    ) -> FusedMoEPrepareAndFinalize | None:
        from .all2all_utils import maybe_make_prepare_finalize

        return maybe_make_prepare_finalize(
            self.moe, self.moe_quant_config, routing_tables
        )

    def select_gemm_impl(
        self,
        prepare_finalize: FusedMoEPrepareAndFinalize,
        layer: torch.nn.Module,
    ) -> FusedMoEPermuteExpertsUnpermute:
        # based on the all2all implementation, select the appropriate
        # gemm implementation
        raise NotImplementedError(
            f"{self.__class__.__name__} must select appropriate gemm "
            "implementation based on the prepare_finalize"
        )

    def prepare_dp_allgather_tensor(
        self,
        layer: "FusedMoE",  # type: ignore[name-defined] # noqa: F821
        hidden_states: torch.Tensor,
        router_logits: torch.Tensor,
    ) -> tuple[torch.Tensor, list[torch.Tensor]]:
        """Hook to prepare tensors and extra tensors for DP allgather + EP dispatch."""
        raise NotImplementedError(
            "Method 'prepare_dp_allgather_tensor' is not implemented in "
            f"{self.__class__.__name__}."
        )

    @abstractmethod
    def get_fused_moe_quant_config(
        self, layer: torch.nn.Module
    ) -> FusedMoEQuantConfig | None:
        raise NotImplementedError

    @property
    def topk_indices_dtype(self) -> torch.dtype | None:
        if self.moe_mk is not None:
            return self.moe_mk.prepare_finalize.topk_indices_dtype()
        return None

    @property
    def supports_eplb(self) -> bool:
        return False

    @property
    def method_name(self) -> str:
        return self.__class__.__name__

    @property
    def is_monolithic(self) -> bool:
        return False

    def apply(
        self,
        layer: "FusedMoE",  # type: ignore[name-defined] # noqa: F821
        x: torch.Tensor,
        topk_weights: torch.Tensor,
        topk_ids: torch.Tensor,
        shared_experts_input: torch.Tensor | None,
    ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
        raise NotImplementedError

    def apply_monolithic(
        self,
        layer: "FusedMoE",  # type: ignore[name-defined] # noqa: F821
        x: torch.Tensor,
        router_logits: torch.Tensor,
    ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
        raise NotImplementedError

prepare_dp_allgather_tensor

prepare_dp_allgather_tensor(
    layer: FusedMoE,
    hidden_states: Tensor,
    router_logits: Tensor,
) -> tuple[Tensor, list[Tensor]]

Hook to prepare tensors and extra tensors for DP allgather + EP dispatch.

Source code in vllm/model_executor/layers/fused_moe/fused_moe_method_base.py
def prepare_dp_allgather_tensor(
    self,
    layer: "FusedMoE",  # type: ignore[name-defined] # noqa: F821
    hidden_states: torch.Tensor,
    router_logits: torch.Tensor,
) -> tuple[torch.Tensor, list[torch.Tensor]]:
    """Hook to prepare tensors and extra tensors for DP allgather + EP dispatch."""
    raise NotImplementedError(
        "Method 'prepare_dp_allgather_tensor' is not implemented in "
        f"{self.__class__.__name__}."
    )

uses_weight_scale_2_pattern

uses_weight_scale_2_pattern() -> bool

Returns True if this quantization method uses 'weight_scale_2' pattern for per-tensor weight scales (e.g., FP4 variants), False otherwise.

This method should be overridden by subclasses that use the 'weight_scale_2' pattern instead of the standard 'weight_scale' pattern.

Source code in vllm/model_executor/layers/fused_moe/fused_moe_method_base.py
def uses_weight_scale_2_pattern(self) -> bool:
    """
    Returns True if this quantization method uses 'weight_scale_2' pattern
    for per-tensor weight scales (e.g., FP4 variants), False otherwise.

    This method should be overridden by subclasses that use the
    'weight_scale_2' pattern instead of the standard 'weight_scale' pattern.
    """
    return False

FusedMoEPermuteExpertsUnpermute

Bases: ABC

An abstract base class for the [Permute-Experts-Unpermute] step described above.

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
class FusedMoEPermuteExpertsUnpermute(ABC):
    """
    An abstract base class for the [Permute-Experts-Unpermute] step described
        above.
    """

    def __init__(
        self,
        moe_config: FusedMoEConfig,
        quant_config: FusedMoEQuantConfig,
        max_num_tokens: int | None = None,
        num_dispatchers: int | None = None,
    ):
        """
        moe_config: MoE layer configuration.
        quant_config: Quantization parameters for this experts instance.
        """
        if self.activation_format() == FusedMoEActivationFormat.Standard and (
            max_num_tokens is not None or num_dispatchers is not None
        ):
            raise ValueError(
                "max_num_tokens and num_dispatchers should only be set for "
                "BatchedExperts activation format."
            )
        elif self.activation_format() == FusedMoEActivationFormat.BatchedExperts and (
            max_num_tokens is None or num_dispatchers is None
        ):
            raise ValueError(
                "max_num_tokens and num_dispatchers must be set for "
                "BatchedExperts activation format."
            )

        self.moe_config = moe_config
        self.quant_config = quant_config
        self.max_num_tokens = max_num_tokens
        self.num_dispatchers = num_dispatchers

    @property
    def expects_unquantized_inputs(self) -> bool:
        """
        Whether or not the PrepareFinalize should defer input quantization
        in the prepare step. If True, then the Experts kernel will
        execute the input quantization itself.

        Sample subclasses that override are AITER and FlashInfer CUTLASS.
        """
        return False

    @staticmethod
    @abstractmethod
    def activation_format() -> FusedMoEActivationFormat:
        """
        A property which is a tuple of the input and output activation formats
        for the 'apply' method.
        """
        raise NotImplementedError

    def moe_problem_size(
        self,
        a1: torch.Tensor,
        w1: torch.Tensor,
        w2: torch.Tensor,
        topk_ids: torch.Tensor,
    ) -> tuple[int, int, int, int, int]:
        """
        Extract the MoE problem size from the given tensor arguments:
        - a: The hidden states, input to the MoE layer.
        - w1: The first set of expert weights.
        - w2: The second set of expert weights.
        - topk_ids: The topk ids.

        Note: extracting the problem shape from the weight and activation
        tensors is not obvious.  It needs to be done this way specifically
        due to subtle issues with particular kernels, e.g. the int4 kernels
        divide the trailing dimension by two, so it's not "correct" to
        extract N or K from the trailing dimension of w1 or w2.  Similarly,
        some kernels transpose the weights, so this needs to be kept in mind.

        Note: This implementation covers most cases. However, if experts
        require a specialized implementation, like MarlinExperts, they are free
        to override this function.
        """
        assert w1.dim() == 3 and w2.dim() == 3
        E, N, _ = w1.size()
        K = a1.size(-1)

        if a1.dim() == 2:
            # Make sure we are using the correct a1 (pre-permute).
            assert topk_ids.size(0) == a1.size(0), f"{topk_ids.size(0)} != {a1.size(0)}"
            M = a1.size(0)
        else:
            assert a1.dim() == 3
            assert a1.size(0) == E, f"{a1.size(0)} == {E}"
            M = a1.size(1)  # This is max_num_tokens

        assert topk_ids.dim() == 2
        topk = topk_ids.size(1)

        return E, M, N, K, topk

    #
    # Various helpers for registering support for various features.
    # Used by the oracle to select a particular kernel for a deployment.
    #

    @staticmethod
    def is_supported_config(
        cls: type["FusedMoEPermuteExpertsUnpermute"],
        moe_config: FusedMoEConfig,
        weight_key: QuantKey | None,
        activation_key: QuantKey | None,
        activation_format: FusedMoEActivationFormat,
    ) -> tuple[bool, str | None]:
        def _make_reason(reason: str) -> str:
            return f"kernel does not support {reason}"

        if not cls._supports_current_device():
            return False, _make_reason("current device")
        elif not (moe_config.is_act_and_mul or cls._supports_no_act_and_mul()):
            return False, _make_reason("no act_and_mul MLP layer")
        elif not cls._supports_activation(moe_config.activation):
            return False, _make_reason(f"{moe_config.activation} activation")
        elif not cls._supports_quant_scheme(weight_key, activation_key):
            return False, _make_reason("quantization scheme")
        elif not cls._supports_parallel_config(moe_config.moe_parallel_config):
            return False, _make_reason("parallel config")
        elif activation_format != cls.activation_format():
            return False, _make_reason(f"{activation_format.value} activation format")
        return True, None

    @staticmethod
    @abstractmethod
    def _supports_current_device() -> bool:
        """
        Whether the kernel supports the current device type
        (compute cability and current platform).
        """
        raise NotImplementedError

    @staticmethod
    @abstractmethod
    def _supports_no_act_and_mul() -> bool:
        """
        Whether the kernel supports act_and_mul=False, i.e.
        non-gated MoE models like Nemotron-Nano.
        """
        raise NotImplementedError

    @staticmethod
    @abstractmethod
    def _supports_quant_scheme(
        weight_key: QuantKey | None,
        activation_key: QuantKey | None,
    ) -> bool:
        raise NotImplementedError

    @staticmethod
    @abstractmethod
    def _supports_activation(activation: MoEActivation) -> bool:
        """
        Whether the kernel supports a particular act function.
        """
        raise NotImplementedError

    @staticmethod
    @abstractmethod
    def _supports_parallel_config(moe_parallel_config: FusedMoEParallelConfig) -> bool:
        """
        Whether the kernel supports deployment in expert parallel.
        """
        raise NotImplementedError

    #
    # Various helpers for accessing quantization parameters from the
    # quant_config.
    #

    @property
    def quant_dtype(self) -> torch.dtype | None:
        return self.quant_config.quant_dtype

    @property
    def block_shape(self) -> list[int] | None:
        return self.quant_config.block_shape

    @property
    def per_act_token_quant(self) -> bool:
        return self.quant_config.per_act_token_quant

    @property
    def per_out_ch_quant(self) -> bool:
        return self.quant_config.per_out_ch_quant

    @property
    def a1_scale(self) -> torch.Tensor | None:
        return self.quant_config.a1_scale

    @property
    def a2_scale(self) -> torch.Tensor | None:
        return self.quant_config.a2_scale

    @property
    def a1_gscale(self) -> torch.Tensor | None:
        return self.quant_config.a1_gscale

    @property
    def a2_gscale(self) -> torch.Tensor | None:
        return self.quant_config.a2_gscale

    @property
    def w1_scale(self) -> torch.Tensor | None:
        return self.quant_config.w1_scale

    @property
    def w2_scale(self) -> torch.Tensor | None:
        return self.quant_config.w2_scale

    @property
    def w1_zp(self) -> torch.Tensor | None:
        return self.quant_config.w1_zp

    @property
    def w2_zp(self) -> torch.Tensor | None:
        return self.quant_config.w2_zp

    @property
    def w1_bias(self) -> torch.Tensor | None:
        return self.quant_config.w1_bias

    @property
    def w2_bias(self) -> torch.Tensor | None:
        return self.quant_config.w2_bias

    @property
    def g1_alphas(self) -> torch.Tensor | None:
        return self.quant_config.g1_alphas

    @property
    def g2_alphas(self) -> torch.Tensor | None:
        return self.quant_config.g2_alphas

    # TODO (bnell): make this return a CHUNK_SIZE or None instead?
    @abstractmethod
    def supports_chunking(self) -> bool:
        """
        A flag indicating whether or not this class supports activation
        chunking.
        """
        raise NotImplementedError

    @abstractmethod
    def supports_expert_map(self) -> bool:
        """
        A flag indicating whether or not this class supports expert maps
        """
        raise NotImplementedError

    def supports_packed_ue8m0_act_scales(self) -> bool:
        """
        A flag indicating whether or not this class can process packed ue8m0
        activation scales.
        """
        return False

    def workspace_dtype(self, act_dtype: torch.dtype) -> torch.dtype:
        """
        Workspace type: The dtype to use for the workspace tensors.
        """
        return act_dtype

    @abstractmethod
    def workspace_shapes(
        self,
        M: int,
        N: int,
        K: int,
        topk: int,
        global_num_experts: int,
        local_num_experts: int,
        expert_tokens_meta: ExpertTokensMetadata | None,
        activation: MoEActivation,
    ) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...]]:
        """
        Compute the shapes for the temporary and final outputs of the two gemms
        and activation in the fused expert function.  Since the gemms are
        independent, the workspace for the first gemm can be shared with the
        workspace for the last gemm.

        Inputs:
        - M: number of tokens.
        - N: Row (or column) dimension of expert weights.
        - K: hidden dimension
        - topk: The number of top-k experts to select.
        - global_num_experts: global number of experts.
        - local_num_experts: local number of experts due to DP/EP.
        - expert_tokens_meta: number of tokens per expert metadata for batched
                              format.

        Returns a tuple of:
        - workspace13 shape tuple: must be large enough to hold the
          result of either expert gemm.
        - workspace2 shape tuple: must be large enough to hold the
          result of the activation function.
        - output shape tuple: must be exact size of the final gemm output.
        - Note: workspace shapes can be 0 if the workspace is not needed.
          But in order for activation chunking to work, the first dimension
          of each tuple must be the number of tokens when the shape is
          not 0.
        """
        raise NotImplementedError

    @staticmethod
    def adjust_N_for_activation(N: int, activation: MoEActivation) -> int:
        """
        Calculate the output dimension for the activation function.

        For *_no_mul activations (e.g. relu2_no_mul),
        there's no gate/up split, so output size equals input size (N).

        For regular gated activations (e.g., silu, gelu, swigluoai),
        output size is N // 2 due to gate × activation(up) multiplication.

        Args:
            N: The intermediate size (width of w1/w3 weights).
            activation: The activation function enum.

        Returns:
            The output dimension after activation.
        """
        return N if not activation.is_gated else N // 2

    def activation(
        self, activation: MoEActivation, output: torch.Tensor, input: torch.Tensor
    ) -> None:
        apply_moe_activation(activation, output, input)

    def enable_chunking(self):
        return (
            envs.VLLM_ENABLE_FUSED_MOE_ACTIVATION_CHUNKING and self.supports_chunking()
        )

    def finalize_weight_and_reduce_impl(self) -> TopKWeightAndReduce:
        raise NotImplementedError

    @abstractmethod
    def apply(
        self,
        output: torch.Tensor,
        hidden_states: torch.Tensor,
        w1: torch.Tensor,
        w2: torch.Tensor,
        topk_weights: torch.Tensor,
        topk_ids: torch.Tensor,
        activation: MoEActivation,
        global_num_experts: int,
        expert_map: torch.Tensor | None,
        a1q_scale: torch.Tensor | None,
        a2_scale: torch.Tensor | None,
        workspace13: torch.Tensor,
        workspace2: torch.Tensor,
        expert_tokens_meta: ExpertTokensMetadata | None,
        apply_router_weight_on_input: bool,
    ) -> None:
        """
        This function computes the intermediate result of a Mixture of Experts
        (MoE) layer using two sets of weights, w1 and w2.

        Parameters:
        - output: (torch.Tensor): The unweighted, unreduced output tensor.
        - hidden_states: (torch.Tensor): The (quantized) input tensor to the MoE
          layer.
        - w1 (torch.Tensor): The first set of expert weights.
        - w2 (torch.Tensor): The second set of expert weights.
        - topk_weights: A map of row to expert weights. Some implementations
          choose to do weight application.
        - topk_ids (torch.Tensor): A map of row to expert id.
        - activation (str): The activation function to apply after the first
          MoE layer.
        - global_num_experts (int): The total number of experts in the global
          expert space.
        - expert_map (Optional[torch.Tensor]):  A tensor mapping expert indices
          from the global expert space to the local expert space of the expert
          parallel shard.
        - a1q_scale (Optional[torch.Tensor]): Optional quantized scale to be
          used for a1.  Result of quantization from prepare/finalize and not
          from the FusedMoEQuantConfig.
        - workspace13 (torch.Tensor): A scratch tensor used for gemm outputs
          must be large enough to hold output of either MoE gemm.
        - workspace2 (torch.Tensor): A scratch tensor used for the activation
          function.
        - expert_tokens_meta (Optional[ExpertTokensMetadata]) - An optional
          ExpertTokensMetadata object containing gpu/cpu tensors
          as big as the number of local experts with the information about the
          number of tokens assigned to each local expert.
        - apply_router_weight_on_input: True if router weights are already
          applied on the input. This is relevant if the implementation
          chooses to do weight application.
        """
        raise NotImplementedError

expects_unquantized_inputs property

expects_unquantized_inputs: bool

Whether or not the PrepareFinalize should defer input quantization in the prepare step. If True, then the Experts kernel will execute the input quantization itself.

Sample subclasses that override are AITER and FlashInfer CUTLASS.

__init__

__init__(
    moe_config: FusedMoEConfig,
    quant_config: FusedMoEQuantConfig,
    max_num_tokens: int | None = None,
    num_dispatchers: int | None = None,
)

moe_config: MoE layer configuration. quant_config: Quantization parameters for this experts instance.

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
def __init__(
    self,
    moe_config: FusedMoEConfig,
    quant_config: FusedMoEQuantConfig,
    max_num_tokens: int | None = None,
    num_dispatchers: int | None = None,
):
    """
    moe_config: MoE layer configuration.
    quant_config: Quantization parameters for this experts instance.
    """
    if self.activation_format() == FusedMoEActivationFormat.Standard and (
        max_num_tokens is not None or num_dispatchers is not None
    ):
        raise ValueError(
            "max_num_tokens and num_dispatchers should only be set for "
            "BatchedExperts activation format."
        )
    elif self.activation_format() == FusedMoEActivationFormat.BatchedExperts and (
        max_num_tokens is None or num_dispatchers is None
    ):
        raise ValueError(
            "max_num_tokens and num_dispatchers must be set for "
            "BatchedExperts activation format."
        )

    self.moe_config = moe_config
    self.quant_config = quant_config
    self.max_num_tokens = max_num_tokens
    self.num_dispatchers = num_dispatchers

_supports_activation abstractmethod staticmethod

_supports_activation(activation: MoEActivation) -> bool

Whether the kernel supports a particular act function.

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
@staticmethod
@abstractmethod
def _supports_activation(activation: MoEActivation) -> bool:
    """
    Whether the kernel supports a particular act function.
    """
    raise NotImplementedError

_supports_current_device abstractmethod staticmethod

_supports_current_device() -> bool

Whether the kernel supports the current device type (compute cability and current platform).

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
@staticmethod
@abstractmethod
def _supports_current_device() -> bool:
    """
    Whether the kernel supports the current device type
    (compute cability and current platform).
    """
    raise NotImplementedError

_supports_no_act_and_mul abstractmethod staticmethod

_supports_no_act_and_mul() -> bool

Whether the kernel supports act_and_mul=False, i.e. non-gated MoE models like Nemotron-Nano.

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
@staticmethod
@abstractmethod
def _supports_no_act_and_mul() -> bool:
    """
    Whether the kernel supports act_and_mul=False, i.e.
    non-gated MoE models like Nemotron-Nano.
    """
    raise NotImplementedError

_supports_parallel_config abstractmethod staticmethod

_supports_parallel_config(
    moe_parallel_config: FusedMoEParallelConfig,
) -> bool

Whether the kernel supports deployment in expert parallel.

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
@staticmethod
@abstractmethod
def _supports_parallel_config(moe_parallel_config: FusedMoEParallelConfig) -> bool:
    """
    Whether the kernel supports deployment in expert parallel.
    """
    raise NotImplementedError

activation_format abstractmethod staticmethod

activation_format() -> FusedMoEActivationFormat

A property which is a tuple of the input and output activation formats for the 'apply' method.

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
@staticmethod
@abstractmethod
def activation_format() -> FusedMoEActivationFormat:
    """
    A property which is a tuple of the input and output activation formats
    for the 'apply' method.
    """
    raise NotImplementedError

adjust_N_for_activation staticmethod

adjust_N_for_activation(
    N: int, activation: MoEActivation
) -> int

Calculate the output dimension for the activation function.

For *_no_mul activations (e.g. relu2_no_mul), there's no gate/up split, so output size equals input size (N).

For regular gated activations (e.g., silu, gelu, swigluoai), output size is N // 2 due to gate × activation(up) multiplication.

Parameters:

Name Type Description Default
N int

The intermediate size (width of w1/w3 weights).

required
activation MoEActivation

The activation function enum.

required

Returns:

Type Description
int

The output dimension after activation.

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
@staticmethod
def adjust_N_for_activation(N: int, activation: MoEActivation) -> int:
    """
    Calculate the output dimension for the activation function.

    For *_no_mul activations (e.g. relu2_no_mul),
    there's no gate/up split, so output size equals input size (N).

    For regular gated activations (e.g., silu, gelu, swigluoai),
    output size is N // 2 due to gate × activation(up) multiplication.

    Args:
        N: The intermediate size (width of w1/w3 weights).
        activation: The activation function enum.

    Returns:
        The output dimension after activation.
    """
    return N if not activation.is_gated else N // 2

apply abstractmethod

apply(
    output: Tensor,
    hidden_states: Tensor,
    w1: Tensor,
    w2: Tensor,
    topk_weights: Tensor,
    topk_ids: Tensor,
    activation: MoEActivation,
    global_num_experts: int,
    expert_map: Tensor | None,
    a1q_scale: Tensor | None,
    a2_scale: Tensor | None,
    workspace13: Tensor,
    workspace2: Tensor,
    expert_tokens_meta: ExpertTokensMetadata | None,
    apply_router_weight_on_input: bool,
) -> None

This function computes the intermediate result of a Mixture of Experts (MoE) layer using two sets of weights, w1 and w2.

Parameters: - output: (torch.Tensor): The unweighted, unreduced output tensor. - hidden_states: (torch.Tensor): The (quantized) input tensor to the MoE layer. - w1 (torch.Tensor): The first set of expert weights. - w2 (torch.Tensor): The second set of expert weights. - topk_weights: A map of row to expert weights. Some implementations choose to do weight application. - topk_ids (torch.Tensor): A map of row to expert id. - activation (str): The activation function to apply after the first MoE layer. - global_num_experts (int): The total number of experts in the global expert space. - expert_map (Optional[torch.Tensor]): A tensor mapping expert indices from the global expert space to the local expert space of the expert parallel shard. - a1q_scale (Optional[torch.Tensor]): Optional quantized scale to be used for a1. Result of quantization from prepare/finalize and not from the FusedMoEQuantConfig. - workspace13 (torch.Tensor): A scratch tensor used for gemm outputs must be large enough to hold output of either MoE gemm. - workspace2 (torch.Tensor): A scratch tensor used for the activation function. - expert_tokens_meta (Optional[ExpertTokensMetadata]) - An optional ExpertTokensMetadata object containing gpu/cpu tensors as big as the number of local experts with the information about the number of tokens assigned to each local expert. - apply_router_weight_on_input: True if router weights are already applied on the input. This is relevant if the implementation chooses to do weight application.

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
@abstractmethod
def apply(
    self,
    output: torch.Tensor,
    hidden_states: torch.Tensor,
    w1: torch.Tensor,
    w2: torch.Tensor,
    topk_weights: torch.Tensor,
    topk_ids: torch.Tensor,
    activation: MoEActivation,
    global_num_experts: int,
    expert_map: torch.Tensor | None,
    a1q_scale: torch.Tensor | None,
    a2_scale: torch.Tensor | None,
    workspace13: torch.Tensor,
    workspace2: torch.Tensor,
    expert_tokens_meta: ExpertTokensMetadata | None,
    apply_router_weight_on_input: bool,
) -> None:
    """
    This function computes the intermediate result of a Mixture of Experts
    (MoE) layer using two sets of weights, w1 and w2.

    Parameters:
    - output: (torch.Tensor): The unweighted, unreduced output tensor.
    - hidden_states: (torch.Tensor): The (quantized) input tensor to the MoE
      layer.
    - w1 (torch.Tensor): The first set of expert weights.
    - w2 (torch.Tensor): The second set of expert weights.
    - topk_weights: A map of row to expert weights. Some implementations
      choose to do weight application.
    - topk_ids (torch.Tensor): A map of row to expert id.
    - activation (str): The activation function to apply after the first
      MoE layer.
    - global_num_experts (int): The total number of experts in the global
      expert space.
    - expert_map (Optional[torch.Tensor]):  A tensor mapping expert indices
      from the global expert space to the local expert space of the expert
      parallel shard.
    - a1q_scale (Optional[torch.Tensor]): Optional quantized scale to be
      used for a1.  Result of quantization from prepare/finalize and not
      from the FusedMoEQuantConfig.
    - workspace13 (torch.Tensor): A scratch tensor used for gemm outputs
      must be large enough to hold output of either MoE gemm.
    - workspace2 (torch.Tensor): A scratch tensor used for the activation
      function.
    - expert_tokens_meta (Optional[ExpertTokensMetadata]) - An optional
      ExpertTokensMetadata object containing gpu/cpu tensors
      as big as the number of local experts with the information about the
      number of tokens assigned to each local expert.
    - apply_router_weight_on_input: True if router weights are already
      applied on the input. This is relevant if the implementation
      chooses to do weight application.
    """
    raise NotImplementedError

moe_problem_size

moe_problem_size(
    a1: Tensor, w1: Tensor, w2: Tensor, topk_ids: Tensor
) -> tuple[int, int, int, int, int]

Extract the MoE problem size from the given tensor arguments: - a: The hidden states, input to the MoE layer. - w1: The first set of expert weights. - w2: The second set of expert weights. - topk_ids: The topk ids.

Note: extracting the problem shape from the weight and activation tensors is not obvious. It needs to be done this way specifically due to subtle issues with particular kernels, e.g. the int4 kernels divide the trailing dimension by two, so it's not "correct" to extract N or K from the trailing dimension of w1 or w2. Similarly, some kernels transpose the weights, so this needs to be kept in mind.

Note: This implementation covers most cases. However, if experts require a specialized implementation, like MarlinExperts, they are free to override this function.

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
def moe_problem_size(
    self,
    a1: torch.Tensor,
    w1: torch.Tensor,
    w2: torch.Tensor,
    topk_ids: torch.Tensor,
) -> tuple[int, int, int, int, int]:
    """
    Extract the MoE problem size from the given tensor arguments:
    - a: The hidden states, input to the MoE layer.
    - w1: The first set of expert weights.
    - w2: The second set of expert weights.
    - topk_ids: The topk ids.

    Note: extracting the problem shape from the weight and activation
    tensors is not obvious.  It needs to be done this way specifically
    due to subtle issues with particular kernels, e.g. the int4 kernels
    divide the trailing dimension by two, so it's not "correct" to
    extract N or K from the trailing dimension of w1 or w2.  Similarly,
    some kernels transpose the weights, so this needs to be kept in mind.

    Note: This implementation covers most cases. However, if experts
    require a specialized implementation, like MarlinExperts, they are free
    to override this function.
    """
    assert w1.dim() == 3 and w2.dim() == 3
    E, N, _ = w1.size()
    K = a1.size(-1)

    if a1.dim() == 2:
        # Make sure we are using the correct a1 (pre-permute).
        assert topk_ids.size(0) == a1.size(0), f"{topk_ids.size(0)} != {a1.size(0)}"
        M = a1.size(0)
    else:
        assert a1.dim() == 3
        assert a1.size(0) == E, f"{a1.size(0)} == {E}"
        M = a1.size(1)  # This is max_num_tokens

    assert topk_ids.dim() == 2
    topk = topk_ids.size(1)

    return E, M, N, K, topk

supports_chunking abstractmethod

supports_chunking() -> bool

A flag indicating whether or not this class supports activation chunking.

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
@abstractmethod
def supports_chunking(self) -> bool:
    """
    A flag indicating whether or not this class supports activation
    chunking.
    """
    raise NotImplementedError

supports_expert_map abstractmethod

supports_expert_map() -> bool

A flag indicating whether or not this class supports expert maps

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
@abstractmethod
def supports_expert_map(self) -> bool:
    """
    A flag indicating whether or not this class supports expert maps
    """
    raise NotImplementedError

supports_packed_ue8m0_act_scales

supports_packed_ue8m0_act_scales() -> bool

A flag indicating whether or not this class can process packed ue8m0 activation scales.

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
def supports_packed_ue8m0_act_scales(self) -> bool:
    """
    A flag indicating whether or not this class can process packed ue8m0
    activation scales.
    """
    return False

workspace_dtype

workspace_dtype(act_dtype: dtype) -> dtype

Workspace type: The dtype to use for the workspace tensors.

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
def workspace_dtype(self, act_dtype: torch.dtype) -> torch.dtype:
    """
    Workspace type: The dtype to use for the workspace tensors.
    """
    return act_dtype

workspace_shapes abstractmethod

workspace_shapes(
    M: int,
    N: int,
    K: int,
    topk: int,
    global_num_experts: int,
    local_num_experts: int,
    expert_tokens_meta: ExpertTokensMetadata | None,
    activation: MoEActivation,
) -> tuple[
    tuple[int, ...], tuple[int, ...], tuple[int, ...]
]

Compute the shapes for the temporary and final outputs of the two gemms and activation in the fused expert function. Since the gemms are independent, the workspace for the first gemm can be shared with the workspace for the last gemm.

Inputs: - M: number of tokens. - N: Row (or column) dimension of expert weights. - K: hidden dimension - topk: The number of top-k experts to select. - global_num_experts: global number of experts. - local_num_experts: local number of experts due to DP/EP. - expert_tokens_meta: number of tokens per expert metadata for batched format.

Returns a tuple of: - workspace13 shape tuple: must be large enough to hold the result of either expert gemm. - workspace2 shape tuple: must be large enough to hold the result of the activation function. - output shape tuple: must be exact size of the final gemm output. - Note: workspace shapes can be 0 if the workspace is not needed. But in order for activation chunking to work, the first dimension of each tuple must be the number of tokens when the shape is not 0.

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
@abstractmethod
def workspace_shapes(
    self,
    M: int,
    N: int,
    K: int,
    topk: int,
    global_num_experts: int,
    local_num_experts: int,
    expert_tokens_meta: ExpertTokensMetadata | None,
    activation: MoEActivation,
) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...]]:
    """
    Compute the shapes for the temporary and final outputs of the two gemms
    and activation in the fused expert function.  Since the gemms are
    independent, the workspace for the first gemm can be shared with the
    workspace for the last gemm.

    Inputs:
    - M: number of tokens.
    - N: Row (or column) dimension of expert weights.
    - K: hidden dimension
    - topk: The number of top-k experts to select.
    - global_num_experts: global number of experts.
    - local_num_experts: local number of experts due to DP/EP.
    - expert_tokens_meta: number of tokens per expert metadata for batched
                          format.

    Returns a tuple of:
    - workspace13 shape tuple: must be large enough to hold the
      result of either expert gemm.
    - workspace2 shape tuple: must be large enough to hold the
      result of the activation function.
    - output shape tuple: must be exact size of the final gemm output.
    - Note: workspace shapes can be 0 if the workspace is not needed.
      But in order for activation chunking to work, the first dimension
      of each tuple must be the number of tokens when the shape is
      not 0.
    """
    raise NotImplementedError

FusedMoEPrepareAndFinalize

Bases: ABC

An abstract base class for the [Quantize-Prepare] and [Finalize] steps described above.

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
class FusedMoEPrepareAndFinalize(ABC):
    """
    An abstract base class for the [Quantize-Prepare] and [Finalize] steps
    described above.
    """

    def post_init_setup(self, fused_experts: "FusedMoEPermuteExpertsUnpermute"):
        """
        Initialize FusedMoEPrepareAndFinalize settings that depend on
        FusedMoEPermuteExpertsUnpermute experts object.
        The FusedMoEPrepareAndFinalize implementations that have such
        dependencies may choose to override this function.
        """
        return

    @abstractmethod
    def prepare(
        self,
        a1: torch.Tensor,
        topk_weights: torch.Tensor,
        topk_ids: torch.Tensor,
        num_experts: int,
        expert_map: torch.Tensor | None,
        apply_router_weight_on_input: bool,
        quant_config: FusedMoEQuantConfig,
        defer_input_quant: bool,
    ) -> PrepareResultType:
        """
        Perform any quantization (and/or) dispatching needed for this kernel.
        - a1: The (unquantized) input to the MoE layer.
        - topk_ids: The topk ids.
        - topk_weights: The topk weights.
        - num_experts: The total number of experts in the global expert space.
        - expert_map: A tensor mapping expert indices from the global expert
          space to the local expert space of the expert parallel shard.
        - apply_router_weight_on_input: When True, apply the weights to the
          activations, before quantization + dispatching.
        - quant_config: Quantization info provided by the fused experts.
        - defer_input_quant: Runtime parameter indicating whether or not to
          defer input quantization to the FusedMoEPermuteExpertsUnpermute
          in cases where the compute kernel expects unquantized inputs

        Returns a tuple of:
        - quantized + dispatched a.
        - Optional quantized + dispatched a1_scales.
        - Optional ExpertTokensMetadata containing gpu/cpu tensors
          as big as the number of local experts with the information about the
          number of tokens assigned to each local expert.
        - Optional dispatched expert topk IDs
        - Optional dispatched expert topk weight
        """
        raise NotImplementedError

    def supports_async(self) -> bool:
        """
        Indicates whether or not this class implements prepare_async and
        finalize_async.
        """
        return False

    def prepare_async(
        self,
        a1: torch.Tensor,
        topk_weights: torch.Tensor,
        topk_ids: torch.Tensor,
        num_experts: int,
        expert_map: torch.Tensor | None,
        apply_router_weight_on_input: bool,
        quant_config: FusedMoEQuantConfig,
        defer_input_quant: bool,
    ) -> tuple[Callable, ReceiverType] | ReceiverType:
        """
        Perform any quantization (and/or) dispatching needed for this kernel
        but do not wait for results from other workers.
        - a1: The (unquantized) input to the MoE layer.
        - a1_scale: Optional scales for a1
        - a2_scale: Optional scales for the second MoE gemm.  Required to make
          sure the quantization is consistent for both gemms.
        - topk_ids: The topk ids.
        - topk_weights: The topk weights.
        - num_experts: The total number of experts in the global expert space.
        - expert_map: A tensor mapping expert indices from the global expert
          space to the local expert space of the expert parallel shard.
        - apply_router_weight_on_input: When True, apply the weights to the
          activations, before quantization + dispatching.
        - defer_input_quant: Runtime parameter indicating whether or not to
          defer input quantization to the FusedMoEPermuteExpertsUnpermute
          in cases where the compute kernel expects unquantized inputs

        Returns a callback or a hook callback pair that when invoked waits for
        results from other workers and has the same return signature as
        `prepare`, if a hook is returned this is more lightweight check that
        the recv is complete without doing extra work (used by DBO, will be
        refactored in the very near future)

        e.g.

        ret = obj.prepare_async(...)

        if isinstance(ret, tuple):
            hook, receiver = ret
            hook()

        if hook is not None:
        a, a_scales, expert_meta, topk_ids, topk_weights = receiver()

        is equivalent to:

        a, a_scales, expert_meta, topk_ids, topk_weights = obj.prepare(...)
        """
        raise NotImplementedError

    @abstractmethod
    def finalize(
        self,
        output: torch.Tensor,
        fused_expert_output: torch.Tensor,
        topk_weights: torch.Tensor,
        topk_ids: torch.Tensor,
        apply_router_weight_on_input: bool,
        weight_and_reduce_impl: TopKWeightAndReduce,
    ) -> None:
        """
        Perform any combine plus apply weights and perform a reduction on the
        fused experts output.
        - output: The output tensor, written in place.  Must be (M, K) shape.
        - fused_expert_output: The unweighted, unreduced output of the fused
          experts, it will have (M, topk, K) shape.
        - topk_weights: The weights to be applied to the fused_experts_output.
        - topk_ids: The topk_ids.
        - apply_router_weight_on_input: When False, apply the weights to
          fused_expert_output.
        - weight_and_reduce_impl: An optional TopKWeightAndReduce
          implementation.
        """
        raise NotImplementedError

    def finalize_async(
        self,
        output: torch.Tensor,
        fused_expert_output: torch.Tensor,
        topk_weights: torch.Tensor,
        topk_ids: torch.Tensor,
        apply_router_weight_on_input: bool,
        weight_and_reduce_impl: TopKWeightAndReduce,
    ) -> tuple[Callable, Callable] | Callable:
        """
        Perform any combine plus apply weights and perform a reduction on the
        fused experts output but do not wait for results from other workers.
        - output: The output tensor, written in place.  Must be (M, K) shape.
        - fused_expert_output: The unweighted, unreduced output of the fused
          experts, it will have (M, topk, K) shape.
        - topk_weights: The weights to be applied to the fused_experts_output.
        - topk_ids: The topk_ids.
        - apply_router_weight_on_input: When False, apply the weights to
          fused_expert_output.
        - weight_and_reduce_impl: An optional TopKWeightAndReduce
          implementation.

        Returns a callback or a hook callback pair that when invoked waits for
        results from other workers and has the same return signature as
        `finalize`, if a hook is returned this is more lightweight check that
        the recv is complete without doing extra work (used by DBO, will be
        refactored in the very near future)

        ret = obj.finalize_async(output, ...)
        ... output not valid yet ...
        if isinstance(ret, tuple):
            hook, receiver = ret
            hook()
        receiver()
        ... output valid here ...

        is equivalent to:

        obj.finalize(output, ...)
        """
        raise NotImplementedError

    @property
    @abstractmethod
    def activation_format(self) -> FusedMoEActivationFormat:
        """
        A property indicating the output format of the activations for the
        'prepare' method.
        """
        raise NotImplementedError

    @abstractmethod
    def topk_indices_dtype(self) -> torch.dtype | None:
        """
        The PrepareFinalize All2All implementations generally constrain the
        dtype of the topk_ids they support. This function returns the
        required topk indices dtype so it can be respected.
        Return None if there are no such restrictions.
        """
        raise NotImplementedError

    @abstractmethod
    def max_num_tokens_per_rank(self) -> int | None:
        """
        Some PrepareFinalize All2All implementations are batched. Meaning,
        they can process only as set of tokens at a time. This
        function returns the batch size i.e the maximum number of tokens
        the implementation can process at a time.
        Return None if there are no such restrictions.
        """
        raise NotImplementedError

    @abstractmethod
    def num_dispatchers(self) -> int:
        raise NotImplementedError

    @abstractmethod
    def output_is_reduced(self) -> bool:
        """
        Indicates whether or not the output of finalize is reduced across all
        ranks.
        """
        raise NotImplementedError

activation_format abstractmethod property

activation_format: FusedMoEActivationFormat

A property indicating the output format of the activations for the 'prepare' method.

finalize abstractmethod

finalize(
    output: Tensor,
    fused_expert_output: Tensor,
    topk_weights: Tensor,
    topk_ids: Tensor,
    apply_router_weight_on_input: bool,
    weight_and_reduce_impl: TopKWeightAndReduce,
) -> None

Perform any combine plus apply weights and perform a reduction on the fused experts output. - output: The output tensor, written in place. Must be (M, K) shape. - fused_expert_output: The unweighted, unreduced output of the fused experts, it will have (M, topk, K) shape. - topk_weights: The weights to be applied to the fused_experts_output. - topk_ids: The topk_ids. - apply_router_weight_on_input: When False, apply the weights to fused_expert_output. - weight_and_reduce_impl: An optional TopKWeightAndReduce implementation.

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
@abstractmethod
def finalize(
    self,
    output: torch.Tensor,
    fused_expert_output: torch.Tensor,
    topk_weights: torch.Tensor,
    topk_ids: torch.Tensor,
    apply_router_weight_on_input: bool,
    weight_and_reduce_impl: TopKWeightAndReduce,
) -> None:
    """
    Perform any combine plus apply weights and perform a reduction on the
    fused experts output.
    - output: The output tensor, written in place.  Must be (M, K) shape.
    - fused_expert_output: The unweighted, unreduced output of the fused
      experts, it will have (M, topk, K) shape.
    - topk_weights: The weights to be applied to the fused_experts_output.
    - topk_ids: The topk_ids.
    - apply_router_weight_on_input: When False, apply the weights to
      fused_expert_output.
    - weight_and_reduce_impl: An optional TopKWeightAndReduce
      implementation.
    """
    raise NotImplementedError

finalize_async

finalize_async(
    output: Tensor,
    fused_expert_output: Tensor,
    topk_weights: Tensor,
    topk_ids: Tensor,
    apply_router_weight_on_input: bool,
    weight_and_reduce_impl: TopKWeightAndReduce,
) -> tuple[Callable, Callable] | Callable

Perform any combine plus apply weights and perform a reduction on the fused experts output but do not wait for results from other workers. - output: The output tensor, written in place. Must be (M, K) shape. - fused_expert_output: The unweighted, unreduced output of the fused experts, it will have (M, topk, K) shape. - topk_weights: The weights to be applied to the fused_experts_output. - topk_ids: The topk_ids. - apply_router_weight_on_input: When False, apply the weights to fused_expert_output. - weight_and_reduce_impl: An optional TopKWeightAndReduce implementation.

Returns a callback or a hook callback pair that when invoked waits for results from other workers and has the same return signature as finalize, if a hook is returned this is more lightweight check that the recv is complete without doing extra work (used by DBO, will be refactored in the very near future)

ret = obj.finalize_async(output, ...) ... output not valid yet ... if isinstance(ret, tuple): hook, receiver = ret hook() receiver() ... output valid here ...

is equivalent to:

obj.finalize(output, ...)

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
def finalize_async(
    self,
    output: torch.Tensor,
    fused_expert_output: torch.Tensor,
    topk_weights: torch.Tensor,
    topk_ids: torch.Tensor,
    apply_router_weight_on_input: bool,
    weight_and_reduce_impl: TopKWeightAndReduce,
) -> tuple[Callable, Callable] | Callable:
    """
    Perform any combine plus apply weights and perform a reduction on the
    fused experts output but do not wait for results from other workers.
    - output: The output tensor, written in place.  Must be (M, K) shape.
    - fused_expert_output: The unweighted, unreduced output of the fused
      experts, it will have (M, topk, K) shape.
    - topk_weights: The weights to be applied to the fused_experts_output.
    - topk_ids: The topk_ids.
    - apply_router_weight_on_input: When False, apply the weights to
      fused_expert_output.
    - weight_and_reduce_impl: An optional TopKWeightAndReduce
      implementation.

    Returns a callback or a hook callback pair that when invoked waits for
    results from other workers and has the same return signature as
    `finalize`, if a hook is returned this is more lightweight check that
    the recv is complete without doing extra work (used by DBO, will be
    refactored in the very near future)

    ret = obj.finalize_async(output, ...)
    ... output not valid yet ...
    if isinstance(ret, tuple):
        hook, receiver = ret
        hook()
    receiver()
    ... output valid here ...

    is equivalent to:

    obj.finalize(output, ...)
    """
    raise NotImplementedError

max_num_tokens_per_rank abstractmethod

max_num_tokens_per_rank() -> int | None

Some PrepareFinalize All2All implementations are batched. Meaning, they can process only as set of tokens at a time. This function returns the batch size i.e the maximum number of tokens the implementation can process at a time. Return None if there are no such restrictions.

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
@abstractmethod
def max_num_tokens_per_rank(self) -> int | None:
    """
    Some PrepareFinalize All2All implementations are batched. Meaning,
    they can process only as set of tokens at a time. This
    function returns the batch size i.e the maximum number of tokens
    the implementation can process at a time.
    Return None if there are no such restrictions.
    """
    raise NotImplementedError

output_is_reduced abstractmethod

output_is_reduced() -> bool

Indicates whether or not the output of finalize is reduced across all ranks.

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
@abstractmethod
def output_is_reduced(self) -> bool:
    """
    Indicates whether or not the output of finalize is reduced across all
    ranks.
    """
    raise NotImplementedError

post_init_setup

post_init_setup(
    fused_experts: FusedMoEPermuteExpertsUnpermute,
)

Initialize FusedMoEPrepareAndFinalize settings that depend on FusedMoEPermuteExpertsUnpermute experts object. The FusedMoEPrepareAndFinalize implementations that have such dependencies may choose to override this function.

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
def post_init_setup(self, fused_experts: "FusedMoEPermuteExpertsUnpermute"):
    """
    Initialize FusedMoEPrepareAndFinalize settings that depend on
    FusedMoEPermuteExpertsUnpermute experts object.
    The FusedMoEPrepareAndFinalize implementations that have such
    dependencies may choose to override this function.
    """
    return

prepare abstractmethod

prepare(
    a1: Tensor,
    topk_weights: Tensor,
    topk_ids: Tensor,
    num_experts: int,
    expert_map: Tensor | None,
    apply_router_weight_on_input: bool,
    quant_config: FusedMoEQuantConfig,
    defer_input_quant: bool,
) -> PrepareResultType

Perform any quantization (and/or) dispatching needed for this kernel. - a1: The (unquantized) input to the MoE layer. - topk_ids: The topk ids. - topk_weights: The topk weights. - num_experts: The total number of experts in the global expert space. - expert_map: A tensor mapping expert indices from the global expert space to the local expert space of the expert parallel shard. - apply_router_weight_on_input: When True, apply the weights to the activations, before quantization + dispatching. - quant_config: Quantization info provided by the fused experts. - defer_input_quant: Runtime parameter indicating whether or not to defer input quantization to the FusedMoEPermuteExpertsUnpermute in cases where the compute kernel expects unquantized inputs

Returns a tuple of: - quantized + dispatched a. - Optional quantized + dispatched a1_scales. - Optional ExpertTokensMetadata containing gpu/cpu tensors as big as the number of local experts with the information about the number of tokens assigned to each local expert. - Optional dispatched expert topk IDs - Optional dispatched expert topk weight

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
@abstractmethod
def prepare(
    self,
    a1: torch.Tensor,
    topk_weights: torch.Tensor,
    topk_ids: torch.Tensor,
    num_experts: int,
    expert_map: torch.Tensor | None,
    apply_router_weight_on_input: bool,
    quant_config: FusedMoEQuantConfig,
    defer_input_quant: bool,
) -> PrepareResultType:
    """
    Perform any quantization (and/or) dispatching needed for this kernel.
    - a1: The (unquantized) input to the MoE layer.
    - topk_ids: The topk ids.
    - topk_weights: The topk weights.
    - num_experts: The total number of experts in the global expert space.
    - expert_map: A tensor mapping expert indices from the global expert
      space to the local expert space of the expert parallel shard.
    - apply_router_weight_on_input: When True, apply the weights to the
      activations, before quantization + dispatching.
    - quant_config: Quantization info provided by the fused experts.
    - defer_input_quant: Runtime parameter indicating whether or not to
      defer input quantization to the FusedMoEPermuteExpertsUnpermute
      in cases where the compute kernel expects unquantized inputs

    Returns a tuple of:
    - quantized + dispatched a.
    - Optional quantized + dispatched a1_scales.
    - Optional ExpertTokensMetadata containing gpu/cpu tensors
      as big as the number of local experts with the information about the
      number of tokens assigned to each local expert.
    - Optional dispatched expert topk IDs
    - Optional dispatched expert topk weight
    """
    raise NotImplementedError

prepare_async

prepare_async(
    a1: Tensor,
    topk_weights: Tensor,
    topk_ids: Tensor,
    num_experts: int,
    expert_map: Tensor | None,
    apply_router_weight_on_input: bool,
    quant_config: FusedMoEQuantConfig,
    defer_input_quant: bool,
) -> tuple[Callable, ReceiverType] | ReceiverType

Perform any quantization (and/or) dispatching needed for this kernel but do not wait for results from other workers. - a1: The (unquantized) input to the MoE layer. - a1_scale: Optional scales for a1 - a2_scale: Optional scales for the second MoE gemm. Required to make sure the quantization is consistent for both gemms. - topk_ids: The topk ids. - topk_weights: The topk weights. - num_experts: The total number of experts in the global expert space. - expert_map: A tensor mapping expert indices from the global expert space to the local expert space of the expert parallel shard. - apply_router_weight_on_input: When True, apply the weights to the activations, before quantization + dispatching. - defer_input_quant: Runtime parameter indicating whether or not to defer input quantization to the FusedMoEPermuteExpertsUnpermute in cases where the compute kernel expects unquantized inputs

Returns a callback or a hook callback pair that when invoked waits for results from other workers and has the same return signature as prepare, if a hook is returned this is more lightweight check that the recv is complete without doing extra work (used by DBO, will be refactored in the very near future)

e.g.

ret = obj.prepare_async(...)

if isinstance(ret, tuple): hook, receiver = ret hook()

if hook is not None: a, a_scales, expert_meta, topk_ids, topk_weights = receiver()

is equivalent to:

a, a_scales, expert_meta, topk_ids, topk_weights = obj.prepare(...)

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
def prepare_async(
    self,
    a1: torch.Tensor,
    topk_weights: torch.Tensor,
    topk_ids: torch.Tensor,
    num_experts: int,
    expert_map: torch.Tensor | None,
    apply_router_weight_on_input: bool,
    quant_config: FusedMoEQuantConfig,
    defer_input_quant: bool,
) -> tuple[Callable, ReceiverType] | ReceiverType:
    """
    Perform any quantization (and/or) dispatching needed for this kernel
    but do not wait for results from other workers.
    - a1: The (unquantized) input to the MoE layer.
    - a1_scale: Optional scales for a1
    - a2_scale: Optional scales for the second MoE gemm.  Required to make
      sure the quantization is consistent for both gemms.
    - topk_ids: The topk ids.
    - topk_weights: The topk weights.
    - num_experts: The total number of experts in the global expert space.
    - expert_map: A tensor mapping expert indices from the global expert
      space to the local expert space of the expert parallel shard.
    - apply_router_weight_on_input: When True, apply the weights to the
      activations, before quantization + dispatching.
    - defer_input_quant: Runtime parameter indicating whether or not to
      defer input quantization to the FusedMoEPermuteExpertsUnpermute
      in cases where the compute kernel expects unquantized inputs

    Returns a callback or a hook callback pair that when invoked waits for
    results from other workers and has the same return signature as
    `prepare`, if a hook is returned this is more lightweight check that
    the recv is complete without doing extra work (used by DBO, will be
    refactored in the very near future)

    e.g.

    ret = obj.prepare_async(...)

    if isinstance(ret, tuple):
        hook, receiver = ret
        hook()

    if hook is not None:
    a, a_scales, expert_meta, topk_ids, topk_weights = receiver()

    is equivalent to:

    a, a_scales, expert_meta, topk_ids, topk_weights = obj.prepare(...)
    """
    raise NotImplementedError

supports_async

supports_async() -> bool

Indicates whether or not this class implements prepare_async and finalize_async.

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
def supports_async(self) -> bool:
    """
    Indicates whether or not this class implements prepare_async and
    finalize_async.
    """
    return False

topk_indices_dtype abstractmethod

topk_indices_dtype() -> dtype | None

The PrepareFinalize All2All implementations generally constrain the dtype of the topk_ids they support. This function returns the required topk indices dtype so it can be respected. Return None if there are no such restrictions.

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
@abstractmethod
def topk_indices_dtype(self) -> torch.dtype | None:
    """
    The PrepareFinalize All2All implementations generally constrain the
    dtype of the topk_ids they support. This function returns the
    required topk indices dtype so it can be respected.
    Return None if there are no such restrictions.
    """
    raise NotImplementedError

FusedMoERouter

Bases: ABC

FusedMoERouter is an abstract class that provides a 'select_experts' method that is used for routing hidden states based on router logits.

Source code in vllm/model_executor/layers/fused_moe/router/fused_moe_router.py
class FusedMoERouter(ABC):
    """
    FusedMoERouter is an abstract class that provides a 'select_experts'
    method that is used for routing hidden states based on router logits.
    """

    @property
    @abstractmethod
    def routing_method_type(self) -> RoutingMethodType:
        raise NotImplementedError

    @abstractmethod
    def select_experts(
        self,
        hidden_states: torch.Tensor,
        router_logits: torch.Tensor,
    ) -> tuple[torch.Tensor, torch.Tensor]:
        """
        Route the input hidden states to the top-k experts based on the
        router logits.

        Returns:
            (topk_weights, topk_ids)
            (tuple[torch.Tensor, torch.Tensor]):
            The weights and expert ids computation result.

            **Compatibility**: When EPLB is not enabled, the returned ids are
            equivalent to global logical ids, so should be compatible with
            plain MoE implementations without redundant experts.
        """
        raise NotImplementedError

select_experts abstractmethod

select_experts(
    hidden_states: Tensor, router_logits: Tensor
) -> tuple[Tensor, Tensor]

Route the input hidden states to the top-k experts based on the router logits.

Returns:

Type Description
Tensor

(topk_weights, topk_ids)

tuple[Tensor, Tensor]
tuple[Tensor, Tensor]

The weights and expert ids computation result.

tuple[Tensor, Tensor]

Compatibility: When EPLB is not enabled, the returned ids are

tuple[Tensor, Tensor]

equivalent to global logical ids, so should be compatible with

tuple[Tensor, Tensor]

plain MoE implementations without redundant experts.

Source code in vllm/model_executor/layers/fused_moe/router/fused_moe_router.py
@abstractmethod
def select_experts(
    self,
    hidden_states: torch.Tensor,
    router_logits: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor]:
    """
    Route the input hidden states to the top-k experts based on the
    router logits.

    Returns:
        (topk_weights, topk_ids)
        (tuple[torch.Tensor, torch.Tensor]):
        The weights and expert ids computation result.

        **Compatibility**: When EPLB is not enabled, the returned ids are
        equivalent to global logical ids, so should be compatible with
        plain MoE implementations without redundant experts.
    """
    raise NotImplementedError

GroupedTopk

Bases: CustomOp

GroupedTopk used by the Deepseek-V2 and Deepseek-V3 model.

Source code in vllm/model_executor/layers/fused_moe/router/grouped_topk_router.py
@CustomOp.register("grouped_topk")
class GroupedTopk(CustomOp):
    """GroupedTopk used by the Deepseek-V2 and Deepseek-V3 model."""

    # --8<-- [end:grouped_topk]

    def __init__(
        self,
        topk: int,
        renormalize: bool,
        num_expert_group: int = 0,
        topk_group: int = 0,
        scoring_func: str = "softmax",
        routed_scaling_factor: float = 1.0,
        num_fused_shared_experts: int = 0,
    ) -> None:
        super().__init__()
        self.native_impl = grouped_topk
        self.topk = topk
        self.renormalize = renormalize
        self.num_expert_group = num_expert_group
        self.topk_group = topk_group
        self.scoring_func = scoring_func
        self.routed_scaling_factor = routed_scaling_factor
        self.num_fused_shared_experts = num_fused_shared_experts

    def forward_native(
        self,
        hidden_states: torch.Tensor,
        gating_output: torch.Tensor,
        e_score_correction_bias: torch.Tensor | None = None,
    ) -> tuple[torch.Tensor, torch.Tensor]:
        return self.native_impl(
            hidden_states,
            gating_output,
            self.topk,
            self.renormalize,
            self.num_expert_group,
            self.topk_group,
            self.scoring_func,
            self.routed_scaling_factor,
            e_score_correction_bias,
        )

    def forward_cuda(
        self,
        hidden_states: torch.Tensor,
        gating_output: torch.Tensor,
        e_score_correction_bias: torch.Tensor | None = None,
    ) -> tuple[torch.Tensor, torch.Tensor]:
        return self.forward_native(
            hidden_states, gating_output, e_score_correction_bias
        )

    def forward_hip(
        self,
        hidden_states: torch.Tensor,
        gating_output: torch.Tensor,
        e_score_correction_bias: torch.Tensor | None = None,
    ) -> tuple[torch.Tensor, torch.Tensor]:
        if rocm_aiter_ops.is_fused_moe_enabled():
            if not rocm_aiter_ops.is_fusion_moe_shared_experts_enabled():
                assert self.num_fused_shared_experts == 0
            return rocm_aiter_grouped_topk(
                hidden_states,
                gating_output,
                self.topk,
                self.renormalize,
                self.num_expert_group,
                self.topk_group,
                self.scoring_func,
                self.routed_scaling_factor,
                e_score_correction_bias,
                self.num_fused_shared_experts,
            )
        else:
            return self.forward_native(
                hidden_states, gating_output, e_score_correction_bias
            )

MoEActivation

Bases: Enum

Activation functions for MoE layers.

Source code in vllm/model_executor/layers/fused_moe/activation.py
class MoEActivation(Enum):
    """Activation functions for MoE layers."""

    # Gated activations (gate * activation(up)) expect input of shape [..., 2*d]
    # and produce output of shape [..., d]
    SILU = "silu"
    GELU = "gelu"
    RELU2 = "relu2"
    SWIGLUOAI = "swigluoai"
    SWIGLUSTEP = "swiglustep"

    # Non-gated activations (no mul with gate) expect input of shape [..., d]
    # and produce output of shape [..., d].
    # NOTE: Non-gated activations require the "_no_mul" suffix to be present.
    SILU_NO_MUL = "silu_no_mul"
    GELU_NO_MUL = "gelu_no_mul"
    RELU2_NO_MUL = "relu2_no_mul"

    @property
    def is_gated(self) -> bool:
        """Returns True if activation expects gate*activation(up) pattern.

        Gated activations expect input tensor with 2x the output size,
        where the first half is the gate and second half is the up projection.
        """
        return not self.value.endswith("_no_mul")

    @property
    def custom_op_name(self) -> str:
        """Maps to the CustomOp name of activations
        in vllm/model_executor/layers/activation.py."""
        return _CUSTOM_OP_NAMES[self]

    def without_mul(self) -> "MoEActivation":
        """Get the non-gated variant of this activation.

        For activations that have a _no_mul variant, returns that variant.
        For activations without a _no_mul variant (or already _no_mul),
        returns self.
        """
        return _WITHOUT_MUL.get(self, self)

    @classmethod
    def from_str(cls, s: str) -> "MoEActivation":
        """Parse from string for backward compatibility."""
        for member in cls:
            if member.value == s:
                return member
        valid = [m.value for m in cls]
        raise ValueError(f"Unknown MoE activation: {s!r}. Valid activations: {valid}")

custom_op_name property

custom_op_name: str

Maps to the CustomOp name of activations in vllm/model_executor/layers/activation.py.

is_gated property

is_gated: bool

Returns True if activation expects gate*activation(up) pattern.

Gated activations expect input tensor with 2x the output size, where the first half is the gate and second half is the up projection.

from_str classmethod

from_str(s: str) -> MoEActivation

Parse from string for backward compatibility.

Source code in vllm/model_executor/layers/fused_moe/activation.py
@classmethod
def from_str(cls, s: str) -> "MoEActivation":
    """Parse from string for backward compatibility."""
    for member in cls:
        if member.value == s:
            return member
    valid = [m.value for m in cls]
    raise ValueError(f"Unknown MoE activation: {s!r}. Valid activations: {valid}")

without_mul

without_mul() -> MoEActivation

Get the non-gated variant of this activation.

For activations that have a _no_mul variant, returns that variant. For activations without a _no_mul variant (or already _no_mul), returns self.

Source code in vllm/model_executor/layers/fused_moe/activation.py
def without_mul(self) -> "MoEActivation":
    """Get the non-gated variant of this activation.

    For activations that have a _no_mul variant, returns that variant.
    For activations without a _no_mul variant (or already _no_mul),
    returns self.
    """
    return _WITHOUT_MUL.get(self, self)

SharedFusedMoE

Bases: FusedMoE

A FusedMoE operation that also computes the results of shared experts. If an all2all communicator is being used the shared expert computation can be interleaved with the fused all2all dispatch communication step.

Source code in vllm/model_executor/layers/fused_moe/shared_fused_moe.py
class SharedFusedMoE(FusedMoE):
    """
    A FusedMoE operation that also computes the results of shared experts.
    If an all2all communicator is being used the shared expert computation
    can be interleaved with the fused all2all dispatch communication step.
    """

    def forward(
        self,
        hidden_states: torch.Tensor,
        router_logits: torch.Tensor,
    ) -> tuple[torch.Tensor, torch.Tensor]:
        if not self.use_overlapped:
            if self._shared_experts is not None:
                shared_out = self._shared_experts(hidden_states)

                # Reduce shared expert outputs if necessary, since the MLP
                # should have been created with reduce_results=False.
                if (
                    self.reduce_results
                    and get_tensor_model_parallel_world_size() > 1
                    and self.must_reduce_shared_expert_outputs()
                ):
                    shared_out = tensor_model_parallel_all_reduce(shared_out)
            else:
                shared_out = None

            fused_out = super().forward(
                hidden_states=hidden_states,
                router_logits=router_logits,
            )
        else:
            shared_out, fused_out = super().forward(
                hidden_states=hidden_states,
                router_logits=router_logits,
            )
            # ensure early TP reduction of shared expert outputs when required
            if (
                shared_out is not None
                and self.reduce_results
                and get_tensor_model_parallel_world_size() > 1
                and self.must_reduce_shared_expert_outputs()
            ):
                shared_out = tensor_model_parallel_all_reduce(shared_out)
        return shared_out, fused_out

TritonExperts

Bases: FusedMoEPermuteExpertsUnpermute

Triton-based fused MoE expert implementation.

Source code in vllm/model_executor/layers/fused_moe/fused_moe.py
class TritonExperts(mk.FusedMoEPermuteExpertsUnpermute):
    """Triton-based fused MoE expert implementation."""

    def __init__(
        self,
        moe_config: FusedMoEConfig,
        quant_config: FusedMoEQuantConfig,
    ):
        super().__init__(moe_config, quant_config)

    @staticmethod
    def activation_format() -> mk.FusedMoEActivationFormat:
        return mk.FusedMoEActivationFormat.Standard

    @staticmethod
    def _supports_current_device() -> bool:
        return current_platform.is_cuda_alike()

    @staticmethod
    def _supports_no_act_and_mul() -> bool:
        return False

    @staticmethod
    def _supports_quant_scheme(
        weight_key: QuantKey | None,
        activation_key: QuantKey | None,
    ) -> bool:
        p = current_platform
        if p.is_rocm():
            from vllm.platforms.rocm import on_gfx9

            is_rocm_on_gfx9 = on_gfx9()
        else:
            is_rocm_on_gfx9 = False

        device_supports_fp8 = is_rocm_on_gfx9 or (
            p.is_cuda() and p.has_device_capability((8, 9))
        )

        if not device_supports_fp8:
            return (weight_key, activation_key) == (None, None)

        SUPPORTED_W_A = [
            (None, None),
            (kFp8Static128BlockSym, kFp8Dynamic128Sym),
            (kFp8StaticChannelSym, kFp8DynamicTokenSym),
            (kFp8StaticTensorSym, kFp8DynamicTokenSym),
            (kFp8StaticTensorSym, kFp8StaticTensorSym),
            (kFp8StaticTensorSym, kFp8DynamicTensorSym),
        ]
        return (weight_key, activation_key) in SUPPORTED_W_A

    @staticmethod
    def _supports_activation(activation: MoEActivation) -> bool:
        return activation in [
            MoEActivation.SILU,
            MoEActivation.GELU,
            MoEActivation.SWIGLUOAI,
            MoEActivation.SWIGLUSTEP,
        ]

    @staticmethod
    def _supports_parallel_config(moe_parallel_config: FusedMoEParallelConfig) -> bool:
        return not moe_parallel_config.use_fi_all2allv_kernels

    def supports_chunking(self) -> bool:
        return True

    def supports_expert_map(self) -> bool:
        return True

    def finalize_weight_and_reduce_impl(self) -> mk.TopKWeightAndReduce:
        return TopKWeightAndReduceNoOP()

    def workspace_shapes(
        self,
        M: int,
        N: int,
        K: int,
        topk: int,
        global_num_experts: int,
        local_num_experts: int,
        expert_tokens_meta: mk.ExpertTokensMetadata | None,
        activation: MoEActivation,
    ) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...]]:
        activation_out_dim = self.adjust_N_for_activation(N, activation)
        workspace1 = (M, topk, max(activation_out_dim, K))
        workspace2 = (M, topk, max(N, K))
        output = (M, K)
        return (workspace1, workspace2, output)

    def apply(
        self,
        output: torch.Tensor,
        hidden_states: torch.Tensor,
        w1: torch.Tensor,
        w2: torch.Tensor,
        topk_weights: torch.Tensor,
        topk_ids: torch.Tensor,
        activation: MoEActivation,
        global_num_experts: int,
        expert_map: torch.Tensor | None,
        a1q_scale: torch.Tensor | None,
        a2_scale: torch.Tensor | None,
        workspace13: torch.Tensor,
        workspace2: torch.Tensor,
        expert_tokens_meta: mk.ExpertTokensMetadata | None,
        apply_router_weight_on_input: bool,
    ):
        # Check constraints.
        if self.quant_config.use_int4_w4a16:
            assert hidden_states.size(-1) // 2 == w1.size(2), "Hidden size mismatch"
        else:
            assert hidden_states.size(-1) == w1.size(2), (
                f"Hidden size mismatch {hidden_states.size(-1)} != {w1.size(2)}"
            )

        assert hidden_states.is_contiguous(), "Hidden_states must be contiguous"
        assert hidden_states.dim() == 2
        assert w1.stride(-1) == 1, "Stride of last dimension must be 1"
        assert w2.stride(-1) == 1, "Stride of last dimension must be 1"
        assert hidden_states.dtype in [
            torch.float32,
            torch.float16,
            torch.bfloat16,
            torch.float8_e4m3fn,
            torch.float8_e4m3fnuz,
        ]

        E, num_tokens, N, K, top_k_num = self.moe_problem_size(
            hidden_states, w1, w2, topk_ids
        )

        if global_num_experts == -1:
            global_num_experts = E

        config = try_get_optimal_moe_config(
            w1.size(),
            w2.size(),
            top_k_num,
            self.quant_config.config_name(hidden_states.dtype),
            num_tokens,
            block_shape=self.block_shape,
        )

        if hidden_states.dtype == torch.bfloat16:
            compute_type = tl.bfloat16
        elif hidden_states.dtype == torch.float16:
            compute_type = tl.float16
        elif hidden_states.dtype == torch.float32:
            compute_type = tl.float32
        elif (
            hidden_states.dtype == torch.float8_e4m3fn
            or hidden_states.dtype == torch.float8_e4m3fnuz
        ):
            compute_type = tl.bfloat16
        else:
            raise ValueError(f"Unsupported compute_type: {hidden_states.dtype}")

        # Note that the output tensor might be in workspace1
        intermediate_cache1 = _resize_cache(workspace2, (num_tokens, top_k_num, N))
        cache2_dim = self.adjust_N_for_activation(N, activation)
        intermediate_cache2 = _resize_cache(
            workspace13, (num_tokens * top_k_num, cache2_dim)
        )
        intermediate_cache3 = _resize_cache(workspace2, (num_tokens, top_k_num, K))

        sorted_token_ids, expert_ids, num_tokens_post_padded = moe_align_block_size(
            topk_ids, config["BLOCK_SIZE_M"], global_num_experts, expert_map
        )

        invoke_fused_moe_triton_kernel(
            hidden_states,
            w1,
            intermediate_cache1,
            a1q_scale,
            self.w1_scale,
            None,  # topk_weights
            sorted_token_ids,
            expert_ids,
            num_tokens_post_padded,
            False,  # mul_routed_weights
            top_k_num,
            config,
            compute_type=compute_type,
            use_fp8_w8a8=self.quant_config.use_fp8_w8a8,
            use_int8_w8a8=self.quant_config.use_int8_w8a8,
            use_int8_w8a16=self.quant_config.use_int8_w8a16,
            use_int4_w4a16=self.quant_config.use_int4_w4a16,
            per_channel_quant=self.per_act_token_quant,
            block_shape=self.block_shape,
            B_bias=self.w1_bias,
        )

        self.activation(
            activation, intermediate_cache2, intermediate_cache1.view(-1, N)
        )

        a2q_scale: torch.Tensor | None = None

        qintermediate_cache2, a2q_scale = moe_kernel_quantize_input(
            intermediate_cache2,
            a2_scale,
            self.quant_dtype,
            self.per_act_token_quant,
            self.block_shape,
        )

        invoke_fused_moe_triton_kernel(
            qintermediate_cache2,
            w2,
            intermediate_cache3,
            a2q_scale,
            self.w2_scale,
            topk_weights,
            sorted_token_ids,
            expert_ids,
            num_tokens_post_padded,
            not apply_router_weight_on_input,
            1,
            config,
            compute_type=compute_type,
            use_fp8_w8a8=self.quant_config.use_fp8_w8a8,
            use_int8_w8a8=self.quant_config.use_int8_w8a8,
            use_int8_w8a16=self.quant_config.use_int8_w8a16,
            use_int4_w4a16=self.quant_config.use_int4_w4a16,
            per_channel_quant=self.per_act_token_quant,
            block_shape=self.block_shape,
            B_bias=self.w2_bias,
        )

        # separate function is required for MoE + LoRA
        self.moe_sum(intermediate_cache3, output)

    def moe_sum(self, input: torch.Tensor, output: torch.Tensor) -> None:
        ops.moe_sum(input, output)

TritonOrDeepGemmExperts

Bases: FallbackExperts

DeepGemm with fallback to Triton for low latency shapes.

Source code in vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py
class TritonOrDeepGemmExperts(FallbackExperts):
    """DeepGemm with fallback to Triton for low latency shapes."""

    def __init__(self, moe_config: FusedMoEConfig, quant_config: FusedMoEQuantConfig):
        super().__init__(
            experts=DeepGemmExperts(moe_config, quant_config),
            fallback_experts=TritonExperts(moe_config, quant_config),
        )

    @staticmethod
    def get_clses() -> tuple[
        type[mk.FusedMoEPermuteExpertsUnpermute],
        type[mk.FusedMoEPermuteExpertsUnpermute],
    ]:
        return (DeepGemmExperts, TritonExperts)

    def workspace_shapes(
        self,
        M: int,
        N: int,
        K: int,
        topk: int,
        global_num_experts: int,
        local_num_experts: int,
        expert_tokens_meta: mk.ExpertTokensMetadata | None,
        activation: MoEActivation,
    ) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...]]:
        # Note: the deep gemm workspaces are strictly larger than the triton
        # workspaces so we can be pessimistic here and allocate for DeepGemm
        # even if we fall back to triton later, e.g. if expert maps are set.
        if is_deep_gemm_e8m0_used() or _valid_deep_gemm_shape(M, N, K):
            return self.experts.workspace_shapes(
                M,
                N,
                K,
                topk,
                global_num_experts,
                local_num_experts,
                expert_tokens_meta,
                activation,
            )
        else:
            return self.fallback_experts.workspace_shapes(
                M,
                N,
                K,
                topk,
                global_num_experts,
                local_num_experts,
                expert_tokens_meta,
                activation,
            )

    def _select_experts_impl(
        self,
        hidden_states: torch.Tensor,
        w1: torch.Tensor,
        w2: torch.Tensor,
    ) -> mk.FusedMoEPermuteExpertsUnpermute:
        if is_deep_gemm_e8m0_used() or _valid_deep_gemm(hidden_states, w1, w2):
            return self.experts
        else:
            return self.fallback_experts

UnquantizedFusedMoEMethod

Bases: FusedMoEMethodBase, CustomOp

MoE method without quantization.

Source code in vllm/model_executor/layers/fused_moe/unquantized_fused_moe_method.py
@CustomOp.register("unquantized_fused_moe")
class UnquantizedFusedMoEMethod(FusedMoEMethodBase, CustomOp):
    """MoE method without quantization."""

    # --8<-- [end:unquantized_fused_moe]

    def __init__(self, moe: FusedMoEConfig):
        super().__init__(moe)
        self.unquantized_backend = select_unquantized_moe_backend(
            moe_config=self.moe,
            use_ep=self.moe.moe_parallel_config.use_ep,
            use_dp=self.moe.moe_parallel_config.dp_size > 1,
        )

        # AITER only supports gated activations (silu/gelu), so disable it
        # for non-gated MoE (is_act_and_mul=False)
        self.rocm_aiter_moe_enabled = (
            rocm_aiter_ops.is_fused_moe_enabled() and moe.is_act_and_mul
        )
        self.kernel: mk.FusedMoEModularKernel | None = None
        self._is_monolithic = (
            current_platform.is_cpu()
            or self.unquantized_backend == UnquantizedMoeBackend.FLASHINFER_TRTLLM
        )

        if self.is_monolithic:
            self.apply_monolithic: Callable = self._select_monolithic()

    def _select_monolithic(self) -> Callable:
        """Select the monolithic implementation based on platform."""
        if current_platform.is_cpu():
            return self.forward_monolithic_cpu
        else:
            return self.forward_monolithic_cuda

    def forward_native(
        self,
        layer: "FusedMoE",  # type: ignore[name-defined] # noqa: F821
        x: torch.Tensor,
        topk_weights: torch.Tensor,
        topk_ids: torch.Tensor,
        shared_experts_input: torch.Tensor | None,
    ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
        return self.forward_cuda(layer, x, topk_weights, topk_ids, shared_experts_input)

    @property
    def is_monolithic(self) -> bool:
        return self._is_monolithic

    @property
    def supports_eplb(self) -> bool:
        return True

    def maybe_make_prepare_finalize(
        self,
        routing_tables: tuple[torch.Tensor, torch.Tensor, torch.Tensor] | None = None,
    ) -> FusedMoEPrepareAndFinalize | None:
        if self.unquantized_backend == UnquantizedMoeBackend.AITER:
            return None
        else:
            return super().maybe_make_prepare_finalize(routing_tables)

    def select_gemm_impl(
        self,
        prepare_finalize: FusedMoEPrepareAndFinalize,
        layer: torch.nn.Module,
    ) -> FusedMoEPermuteExpertsUnpermute:
        assert self.moe_quant_config is not None
        if (
            prepare_finalize.activation_format
            == FusedMoEActivationFormat.BatchedExperts
        ):
            logger.debug("BatchedTritonExperts %s", self.moe)
            return BatchedTritonExperts(
                moe_config=self.moe,
                quant_config=self.moe_quant_config,
                max_num_tokens=self.moe.max_num_tokens,
                num_dispatchers=prepare_finalize.num_dispatchers(),
            )
        else:
            logger.debug("TritonExperts %s", self.moe)
            return TritonExperts(
                moe_config=self.moe,
                quant_config=self.moe_quant_config,
            )

    def create_weights(
        self,
        layer: torch.nn.Module,
        num_experts: int,
        hidden_size: int,
        intermediate_size_per_partition: int,
        params_dtype: torch.dtype,
        **extra_weight_attrs,
    ):
        if self.moe.is_act_and_mul:
            w13_up_dim = 2 * intermediate_size_per_partition
        else:
            w13_up_dim = intermediate_size_per_partition
        # Fused gate_up_proj (column parallel)
        w13_weight = torch.nn.Parameter(
            torch.empty(
                num_experts,
                w13_up_dim,
                hidden_size,
                dtype=params_dtype,
            ),
            requires_grad=False,
        )
        layer.register_parameter("w13_weight", w13_weight)
        set_weight_attrs(w13_weight, extra_weight_attrs)
        if self.moe.has_bias:
            w13_bias = torch.nn.Parameter(
                torch.zeros(num_experts, w13_up_dim, dtype=params_dtype),
                requires_grad=False,
            )
            layer.register_parameter("w13_bias", w13_bias)
            set_weight_attrs(w13_bias, extra_weight_attrs)
        # down_proj (row parallel)
        w2_weight = torch.nn.Parameter(
            torch.empty(
                num_experts,
                hidden_size,
                intermediate_size_per_partition,
                dtype=params_dtype,
            ),
            requires_grad=False,
        )
        layer.register_parameter("w2_weight", w2_weight)
        set_weight_attrs(w2_weight, extra_weight_attrs)
        if self.moe.has_bias:
            w2_bias = torch.nn.Parameter(
                torch.zeros(num_experts, hidden_size, dtype=params_dtype),
                requires_grad=False,
            )
            layer.register_parameter("w2_bias", w2_bias)
            set_weight_attrs(w2_bias, extra_weight_attrs)

    def _maybe_pad_weight(self, weight: torch.Tensor) -> torch.Tensor:
        # Pad the weight tensor. This is an optimization on ROCm platform, which
        # can benefit from tensors located far enough from one another in memory
        if (
            envs.VLLM_ROCM_MOE_PADDING
            and current_platform.is_rocm()
            and weight.stride(-1) == 1
            and (weight.stride(-2) * weight.element_size()) % 512 == 0
        ):
            num_pad = 256 // weight.element_size()
            weight = F.pad(weight, (0, num_pad), "constant", 0)[..., :-num_pad]
            torch.cuda.empty_cache()

        return weight

    def _setup_kernel(
        self,
        layer: Module,
        w13: torch.Tensor,
        w2: torch.Tensor,
    ) -> None:
        # Shuffle weights to runtime format.
        w13, w2 = convert_to_unquantized_kernel_format(
            self.unquantized_backend,
            layer=layer,
            w13_weight=w13,
            w2_weight=w2,
        )
        replace_parameter(layer, "w13_weight", w13)
        replace_parameter(layer, "w2_weight", w2)

        # Setup Modular Kernel for TP Case
        self.moe_quant_config = self.get_fused_moe_quant_config(layer)
        assert self.moe_quant_config is not None

        self.kernel = make_unquantized_moe_kernel(
            backend=self.unquantized_backend,
            quant_config=self.moe_quant_config,
            moe_config=self.moe,
        )

    def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
        super().process_weights_after_loading(layer)

        # Padding the weight for better performance on ROCm
        layer.w13_weight.data = self._maybe_pad_weight(layer.w13_weight.data)
        layer.w2_weight.data = self._maybe_pad_weight(layer.w2_weight.data)

        if self.unquantized_backend == UnquantizedMoeBackend.FLASHINFER_TRTLLM:
            _cache_permute_indices: dict[torch.Size, torch.Tensor] = {}
            # Swap halves to arrange as [w3; w1] (kernel expectation)
            w1_w, w3_w = torch.chunk(layer.w13_weight.data, 2, dim=1)
            w13_weight_swapped = torch.cat([w3_w, w1_w], dim=1)
            layer.w13_weight.data = w13_weight_swapped.contiguous()
            w13_weights_shuffled, w2_weights_shuffled = (
                convert_moe_weights_to_flashinfer_trtllm_block_layout(
                    _cache_permute_indices,
                    layer.w13_weight.data,
                    layer.w2_weight.data,
                )
            )
            layer.w13_weight = Parameter(w13_weights_shuffled, requires_grad=False)
            layer.w2_weight = Parameter(w2_weights_shuffled, requires_grad=False)
        elif self.unquantized_backend == UnquantizedMoeBackend.CPU:
            from vllm.model_executor.layers.fused_moe import cpu_fused_moe

            if current_platform.get_cpu_architecture() == CpuArchEnum.X86:
                from vllm.model_executor.layers.utils import check_cpu_sgl_kernel

                dtype_w13 = layer.w13_weight.dtype
                _, n_w13, k_w13 = layer.w13_weight.size()
                dtype_w2 = layer.w2_weight.dtype
                _, n_w2, k_w2 = layer.w2_weight.size()
                if (
                    envs.VLLM_CPU_SGL_KERNEL
                    and check_cpu_sgl_kernel(n_w13, k_w13, dtype_w13)
                    and check_cpu_sgl_kernel(n_w2, k_w2, dtype_w2)
                ):
                    packed_w13_weight = torch.ops._C.convert_weight_packed(
                        layer.w13_weight
                    )
                    assert packed_w13_weight.size() == layer.w13_weight.size()
                    layer.w13_weight.copy_(packed_w13_weight)
                    del packed_w13_weight
                    packed_w2_weight = torch.ops._C.convert_weight_packed(
                        layer.w2_weight
                    )
                    assert packed_w2_weight.size() == layer.w2_weight.size()
                    layer.w2_weight.copy_(packed_w2_weight)
                    self.cpu_fused_moe: Callable = cpu_fused_moe.SGLFusedMOE(layer)
                else:
                    self.cpu_fused_moe = cpu_fused_moe.CPUFusedMOE(layer)
            else:
                self.cpu_fused_moe = cpu_fused_moe.CPUFusedMOE(layer)
        elif current_platform.is_cuda_alike() or current_platform.is_xpu():
            self._setup_kernel(
                layer=layer,
                w13=layer.w13_weight,
                w2=layer.w2_weight,
            )

    def apply(
        self,
        layer: "FusedMoE",  # type: ignore[name-defined] # noqa: F821
        x: torch.Tensor,
        topk_weights: torch.Tensor,
        topk_ids: torch.Tensor,
        shared_experts_input: torch.Tensor | None,
    ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
        return self.forward(
            layer=layer,
            x=x,
            topk_weights=topk_weights,
            topk_ids=topk_ids,
            shared_experts_input=shared_experts_input,
        )

    def get_fused_moe_quant_config(self, layer: torch.nn.Module) -> FusedMoEQuantConfig:
        if self.moe.has_bias:
            return biased_moe_quant_config(
                layer.w13_bias,
                layer.w2_bias,
            )
        else:
            return FUSED_MOE_UNQUANTIZED_CONFIG

    def forward_cuda(
        self,
        layer: "FusedMoE",  # type: ignore[name-defined] # noqa: F821
        x: torch.Tensor,
        topk_weights: torch.Tensor,
        topk_ids: torch.Tensor,
        shared_experts_input: torch.Tensor | None,
    ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
        assert self.kernel is not None

        return self.kernel(
            hidden_states=x,
            w1=layer.w13_weight,
            w2=layer.w2_weight,
            topk_weights=topk_weights,
            topk_ids=topk_ids,
            activation=layer.activation,
            apply_router_weight_on_input=layer.apply_router_weight_on_input,
            global_num_experts=layer.global_num_experts,
            expert_map=layer.expert_map,
            shared_experts_input=shared_experts_input,
        )

    def forward_monolithic_cuda(
        self,
        layer: "FusedMoE",  # type: ignore[name-defined] # noqa: F821
        x: torch.Tensor,
        router_logits: torch.Tensor,
    ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
        import vllm.model_executor.layers.fused_moe.flashinfer_trtllm_moe  # noqa: F401

        assert self.unquantized_backend == UnquantizedMoeBackend.FLASHINFER_TRTLLM

        return torch.ops.vllm.flashinfer_fused_moe_bf16(
            routing_logits=router_logits,
            routing_bias=layer.e_score_correction_bias,
            hidden_states=x,
            gemm1_weights=layer.w13_weight,
            gemm2_weights=layer.w2_weight,
            num_experts=layer.global_num_experts,
            top_k=layer.top_k,
            n_group=layer.num_expert_group,
            topk_group=layer.topk_group,
            intermediate_size=layer.intermediate_size_per_partition,
            local_expert_offset=layer.ep_rank * layer.local_num_experts,
            local_num_experts=layer.local_num_experts,
            routing_method_type=layer.routing_method_type,
        )

    def forward_monolithic_cpu(
        self,
        layer: "FusedMoE",  # type: ignore[name-defined] # noqa: F821
        x: torch.Tensor,
        router_logits: torch.Tensor,
    ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
        return self.cpu_fused_moe(
            layer,
            x,
            layer.use_grouped_topk,
            layer.top_k,
            router_logits,
            layer.renormalize,
            layer.topk_group,
            layer.num_expert_group,
            layer.global_num_experts,
            layer.expert_map,
            layer.custom_routing_function,
            layer.scoring_func,
            layer.routed_scaling_factor,
            layer.e_score_correction_bias,
            layer.apply_router_weight_on_input,
            layer.activation,
        )

_select_monolithic

_select_monolithic() -> Callable

Select the monolithic implementation based on platform.

Source code in vllm/model_executor/layers/fused_moe/unquantized_fused_moe_method.py
def _select_monolithic(self) -> Callable:
    """Select the monolithic implementation based on platform."""
    if current_platform.is_cpu():
        return self.forward_monolithic_cpu
    else:
        return self.forward_monolithic_cuda

ZeroExpertFusedMoE

Bases: FusedMoE

A FusedMoE operation that also computes the results of zero experts. Zero experts perform identity operations (scaled pass-through) instead of full MLP computations.

This class uses memoization to avoid redundant routing computation: routing is computed once and reused for both zero expert computation and the main FusedMoE forward pass.

Source code in vllm/model_executor/layers/fused_moe/zero_expert_fused_moe.py
class ZeroExpertFusedMoE(FusedMoE):
    """
    A FusedMoE operation that also computes the results of zero experts.
    Zero experts perform identity operations (scaled pass-through) instead
    of full MLP computations.

    This class uses memoization to avoid redundant routing computation:
    routing is computed once and reused for both zero expert computation
    and the main FusedMoE forward pass.
    """

    def __init__(
        self,
        zero_expert_num: int,
        zero_expert_type: str,
        router: nn.Module,
        **kwargs,
    ):
        # ZeroExpertFusedMoE manages its own custom_routing_function for memoization
        assert (
            "custom_routing_function" not in kwargs
            or kwargs.get("custom_routing_function") is None
        ), (
            "ZeroExpertFusedMoE does not support external custom_routing_function. "
            "It manages its own for routing memoization."
        )

        # Automatically slice router's e_score_correction_bias to only include
        # real experts (not zero_experts) for the base FusedMoE.
        # The full bias will be used temporarily in forward() for routing.
        if hasattr(router, "e_score_correction_bias") and "num_experts" in kwargs:
            num_real_experts = kwargs["num_experts"]
            router_bias = router.e_score_correction_bias
            user_bias = kwargs.get("e_score_correction_bias")

            # Use router's bias if:
            # 1. User didn't provide bias, or
            # 2. User provided full bias (same size as router)
            if user_bias is None or user_bias.shape[0] == router_bias.shape[0]:
                kwargs["e_score_correction_bias"] = router_bias[:num_real_experts]

        # FusedMoE no longer accepts zero_expert_num/zero_expert_type.
        # We handle zero experts ourselves in forward().
        super().__init__(**kwargs)
        # Store the actual zero_expert_num and zero_expert_type for our own use
        self._actual_zero_expert_num = zero_expert_num
        self._actual_zero_expert_type = zero_expert_type
        self._router = router  # Full router (includes zero experts)

        # Expose zero_expert_num and zero_expert_type as attributes for
        # compatibility with quantization methods that check these attributes
        self.zero_expert_num = 0
        self.zero_expert_type = None

        # Memoization state for routing results
        self._memoized_topk_weights: torch.Tensor | None = None
        self._memoized_topk_ids: torch.Tensor | None = None

        # Create custom_routing_function to reuse memoized routing results
        def custom_routing_function(hidden_states, gating_output, topk, renormalize):
            """Return memoized `topk_weights` and `topk_ids`."""
            if self._memoized_topk_weights is None or self._memoized_topk_ids is None:
                raise RuntimeError(
                    "ZeroExpertFusedMoE: routing results not memoized. "
                    "Call select_experts first to compute routing."
                )
            return self._memoized_topk_weights, self._memoized_topk_ids

        self.custom_routing_function = custom_routing_function

    @contextmanager
    def _temporarily_set_attrs(self, **attrs):
        """
        Temporarily set attributes using object.__setattr__ and restore them.

        This bypasses nn.Module.__setattr__ to avoid Dynamo tracing issues.
        When PyTorch Dynamo traces the forward pass, it cannot handle
        nn.Module.__setattr__ calls (which include parameter registration logic),
        resulting in "Unsupported" errors. Using object.__setattr__ directly
        sets the attribute without triggering nn.Module's custom __setattr__,
        allowing Dynamo to trace the code successfully.
        """
        originals = {key: getattr(self, key) for key in attrs}
        try:
            for key, value in attrs.items():
                object.__setattr__(self, key, value)
            yield
        finally:
            for key, value in originals.items():
                object.__setattr__(self, key, value)

    def _compute_zero_expert_result(
        self,
        hidden_states: torch.Tensor,
        topk_weights: torch.Tensor,
        topk_ids: torch.Tensor,
    ) -> torch.Tensor | None:
        """Compute zero expert results using pre-computed routing."""
        if (
            self._actual_zero_expert_num is None
            or self._actual_zero_expert_num <= 0
            or self._actual_zero_expert_type is None
        ):
            return None

        return zero_experts_compute_triton(
            expert_indices=topk_ids.clone(),
            expert_scales=topk_weights.clone(),
            num_experts=self.logical_num_experts,
            zero_expert_type=self._actual_zero_expert_type,
            hidden_states=hidden_states,
        )

    def forward(
        self,
        hidden_states: torch.Tensor,
        router_logits: torch.Tensor,  # Full logits including zero experts
    ) -> torch.Tensor:
        """
        Forward pass with zero expert support and routing memoization.

        Args:
            hidden_states: Input hidden states
            router_logits: Full router logits (including zero experts)

        Returns:
            Combined output from real experts and zero experts
        """
        # Prepare temporary attribute overrides for routing computation
        temp_attrs = {
            "custom_routing_function": None,  # Disable for first routing
        }
        if self._router is not None:
            temp_attrs["e_score_correction_bias"] = self._router.e_score_correction_bias

        # Compute routing with temporary attributes
        # Pass full router_logits (including zero experts) so that zero experts
        # can be properly identified in topk_ids
        with self._temporarily_set_attrs(**temp_attrs):
            topk_weights, topk_ids = self.select_experts(
                hidden_states=hidden_states,
                router_logits=router_logits,  # Full logits (includes zero experts)
            )

        # Compute zero expert result if needed
        zero_expert_result = self._compute_zero_expert_result(
            hidden_states=hidden_states,
            topk_weights=topk_weights,
            topk_ids=topk_ids,
        )

        # Memoize routing results for reuse in super().forward()
        self._memoized_topk_weights = topk_weights
        self._memoized_topk_ids = topk_ids

        # Slice router_logits for real experts only
        router_logits_sliced = router_logits[..., : self.logical_num_experts]

        # Compute real expert results (will reuse memoized routing via
        # custom_routing_function)
        # zero_expert_num is already 0, so FusedMoE won't handle zero experts
        fused_out = super().forward(
            hidden_states=hidden_states,
            router_logits=router_logits_sliced,
        )

        # Combine results
        # Both zero_expert_result and fused_out are computed from the same
        # hidden_states, so they should be on the same device.
        if zero_expert_result is not None:
            fused_out = fused_out + zero_expert_result

        # Clear memoization after use
        self._memoized_topk_weights = None
        self._memoized_topk_ids = None

        return fused_out

__init__

__init__(
    zero_expert_num: int,
    zero_expert_type: str,
    router: Module,
    **kwargs,
)
Source code in vllm/model_executor/layers/fused_moe/zero_expert_fused_moe.py
def __init__(
    self,
    zero_expert_num: int,
    zero_expert_type: str,
    router: nn.Module,
    **kwargs,
):
    # ZeroExpertFusedMoE manages its own custom_routing_function for memoization
    assert (
        "custom_routing_function" not in kwargs
        or kwargs.get("custom_routing_function") is None
    ), (
        "ZeroExpertFusedMoE does not support external custom_routing_function. "
        "It manages its own for routing memoization."
    )

    # Automatically slice router's e_score_correction_bias to only include
    # real experts (not zero_experts) for the base FusedMoE.
    # The full bias will be used temporarily in forward() for routing.
    if hasattr(router, "e_score_correction_bias") and "num_experts" in kwargs:
        num_real_experts = kwargs["num_experts"]
        router_bias = router.e_score_correction_bias
        user_bias = kwargs.get("e_score_correction_bias")

        # Use router's bias if:
        # 1. User didn't provide bias, or
        # 2. User provided full bias (same size as router)
        if user_bias is None or user_bias.shape[0] == router_bias.shape[0]:
            kwargs["e_score_correction_bias"] = router_bias[:num_real_experts]

    # FusedMoE no longer accepts zero_expert_num/zero_expert_type.
    # We handle zero experts ourselves in forward().
    super().__init__(**kwargs)
    # Store the actual zero_expert_num and zero_expert_type for our own use
    self._actual_zero_expert_num = zero_expert_num
    self._actual_zero_expert_type = zero_expert_type
    self._router = router  # Full router (includes zero experts)

    # Expose zero_expert_num and zero_expert_type as attributes for
    # compatibility with quantization methods that check these attributes
    self.zero_expert_num = 0
    self.zero_expert_type = None

    # Memoization state for routing results
    self._memoized_topk_weights: torch.Tensor | None = None
    self._memoized_topk_ids: torch.Tensor | None = None

    # Create custom_routing_function to reuse memoized routing results
    def custom_routing_function(hidden_states, gating_output, topk, renormalize):
        """Return memoized `topk_weights` and `topk_ids`."""
        if self._memoized_topk_weights is None or self._memoized_topk_ids is None:
            raise RuntimeError(
                "ZeroExpertFusedMoE: routing results not memoized. "
                "Call select_experts first to compute routing."
            )
        return self._memoized_topk_weights, self._memoized_topk_ids

    self.custom_routing_function = custom_routing_function

_compute_zero_expert_result

_compute_zero_expert_result(
    hidden_states: Tensor,
    topk_weights: Tensor,
    topk_ids: Tensor,
) -> Tensor | None

Compute zero expert results using pre-computed routing.

Source code in vllm/model_executor/layers/fused_moe/zero_expert_fused_moe.py
def _compute_zero_expert_result(
    self,
    hidden_states: torch.Tensor,
    topk_weights: torch.Tensor,
    topk_ids: torch.Tensor,
) -> torch.Tensor | None:
    """Compute zero expert results using pre-computed routing."""
    if (
        self._actual_zero_expert_num is None
        or self._actual_zero_expert_num <= 0
        or self._actual_zero_expert_type is None
    ):
        return None

    return zero_experts_compute_triton(
        expert_indices=topk_ids.clone(),
        expert_scales=topk_weights.clone(),
        num_experts=self.logical_num_experts,
        zero_expert_type=self._actual_zero_expert_type,
        hidden_states=hidden_states,
    )

_temporarily_set_attrs

_temporarily_set_attrs(**attrs)

Temporarily set attributes using object.setattr and restore them.

This bypasses nn.Module.setattr to avoid Dynamo tracing issues. When PyTorch Dynamo traces the forward pass, it cannot handle nn.Module.setattr calls (which include parameter registration logic), resulting in "Unsupported" errors. Using object.setattr directly sets the attribute without triggering nn.Module's custom setattr, allowing Dynamo to trace the code successfully.

Source code in vllm/model_executor/layers/fused_moe/zero_expert_fused_moe.py
@contextmanager
def _temporarily_set_attrs(self, **attrs):
    """
    Temporarily set attributes using object.__setattr__ and restore them.

    This bypasses nn.Module.__setattr__ to avoid Dynamo tracing issues.
    When PyTorch Dynamo traces the forward pass, it cannot handle
    nn.Module.__setattr__ calls (which include parameter registration logic),
    resulting in "Unsupported" errors. Using object.__setattr__ directly
    sets the attribute without triggering nn.Module's custom __setattr__,
    allowing Dynamo to trace the code successfully.
    """
    originals = {key: getattr(self, key) for key in attrs}
    try:
        for key, value in attrs.items():
            object.__setattr__(self, key, value)
        yield
    finally:
        for key, value in originals.items():
            object.__setattr__(self, key, value)

forward

forward(
    hidden_states: Tensor, router_logits: Tensor
) -> Tensor

Forward pass with zero expert support and routing memoization.

Parameters:

Name Type Description Default
hidden_states Tensor

Input hidden states

required
router_logits Tensor

Full router logits (including zero experts)

required

Returns:

Type Description
Tensor

Combined output from real experts and zero experts

Source code in vllm/model_executor/layers/fused_moe/zero_expert_fused_moe.py
def forward(
    self,
    hidden_states: torch.Tensor,
    router_logits: torch.Tensor,  # Full logits including zero experts
) -> torch.Tensor:
    """
    Forward pass with zero expert support and routing memoization.

    Args:
        hidden_states: Input hidden states
        router_logits: Full router logits (including zero experts)

    Returns:
        Combined output from real experts and zero experts
    """
    # Prepare temporary attribute overrides for routing computation
    temp_attrs = {
        "custom_routing_function": None,  # Disable for first routing
    }
    if self._router is not None:
        temp_attrs["e_score_correction_bias"] = self._router.e_score_correction_bias

    # Compute routing with temporary attributes
    # Pass full router_logits (including zero experts) so that zero experts
    # can be properly identified in topk_ids
    with self._temporarily_set_attrs(**temp_attrs):
        topk_weights, topk_ids = self.select_experts(
            hidden_states=hidden_states,
            router_logits=router_logits,  # Full logits (includes zero experts)
        )

    # Compute zero expert result if needed
    zero_expert_result = self._compute_zero_expert_result(
        hidden_states=hidden_states,
        topk_weights=topk_weights,
        topk_ids=topk_ids,
    )

    # Memoize routing results for reuse in super().forward()
    self._memoized_topk_weights = topk_weights
    self._memoized_topk_ids = topk_ids

    # Slice router_logits for real experts only
    router_logits_sliced = router_logits[..., : self.logical_num_experts]

    # Compute real expert results (will reuse memoized routing via
    # custom_routing_function)
    # zero_expert_num is already 0, so FusedMoE won't handle zero experts
    fused_out = super().forward(
        hidden_states=hidden_states,
        router_logits=router_logits_sliced,
    )

    # Combine results
    # Both zero_expert_result and fused_out are computed from the same
    # hidden_states, so they should be on the same device.
    if zero_expert_result is not None:
        fused_out = fused_out + zero_expert_result

    # Clear memoization after use
    self._memoized_topk_weights = None
    self._memoized_topk_ids = None

    return fused_out

activation_without_mul

activation_without_mul(activation: str) -> str

Get the non-gated variant of an activation function.

Parameters:

Name Type Description Default
activation str

The activation function name (e.g., "silu", "gelu")

required

Returns:

Type Description
str

The non-gated activation name (e.g., "silu_no_mul", "gelu_no_mul")

Source code in vllm/model_executor/layers/fused_moe/activation.py
def activation_without_mul(activation: str) -> str:
    """Get the non-gated variant of an activation function.

    Args:
        activation: The activation function name (e.g., "silu", "gelu")

    Returns:
        The non-gated activation name (e.g., "silu_no_mul", "gelu_no_mul")
    """
    return MoEActivation.from_str(activation).without_mul().value

apply_moe_activation

apply_moe_activation(
    activation: MoEActivation, output: Tensor, input: Tensor
) -> Tensor

Apply MoE activation function.

Source code in vllm/model_executor/layers/fused_moe/activation.py
def apply_moe_activation(
    activation: MoEActivation,
    output: torch.Tensor,
    input: torch.Tensor,
) -> torch.Tensor:
    """Apply MoE activation function."""
    assert input.dim() == 2, "Input must be 2D"
    assert output.dim() == 2, "Output must be 2D"
    if activation.is_gated:
        assert output.size(-1) * 2 == input.size(-1), (
            f"{activation.value} expects 2x ratio: "
            f"{output.size(-1) * 2} vs {input.size(-1)}"
        )
    else:
        assert output.size(-1) == input.size(-1), (
            f"{activation.value} expects equal sizes: "
            f"{output.size(-1)} vs {input.size(-1)}"
        )

    # Activations with gated multiplication (gate × activation(up))
    if activation == MoEActivation.SILU:
        torch.ops._C.silu_and_mul(output, input)
    elif activation == MoEActivation.GELU:
        torch.ops._C.gelu_and_mul(output, input)
    elif activation == MoEActivation.SWIGLUOAI:
        torch.ops._C.swigluoai_and_mul(output, input)
    elif activation == MoEActivation.SWIGLUSTEP:
        from vllm.model_executor.layers.activation import swiglustep_and_mul_triton

        swiglustep_and_mul_triton(output, input)

    # Activations without gated multiplication
    elif activation == MoEActivation.SILU_NO_MUL:
        output.copy_(F.silu(input))
    elif activation == MoEActivation.GELU_NO_MUL:
        output.copy_(F.gelu(input))
    elif activation == MoEActivation.RELU2_NO_MUL:
        F.relu(input, inplace=True)
        torch.square(input, out=output)
    else:
        raise ValueError(f"Unsupported FusedMoe activation: {activation}")

    return output

cutlass_moe_w4a8_fp8

cutlass_moe_w4a8_fp8(
    a: Tensor,
    w1_q: Tensor,
    w2_q: Tensor,
    topk_weights: Tensor,
    topk_ids: Tensor,
    a_strides1: Tensor,
    a_strides2: Tensor,
    b_strides1: Tensor,
    b_strides2: Tensor,
    c_strides1: Tensor,
    c_strides2: Tensor,
    s_strides1: Tensor,
    s_strides2: Tensor,
    quant_config: FusedMoEQuantConfig,
    moe_config: FusedMoEConfig,
    activation: MoEActivation = SILU,
    expert_map: Tensor | None = None,
    apply_router_weight_on_input: bool = False,
    global_num_experts: int = -1,
    group_size: int = 128,
) -> Tensor

This function computes a w4a8-quantized Mixture of Experts (MoE) layer using two sets of quantized weights, w1_q and w2_q, and top-k gating mechanism. The matrix multiplications are implemented with CUTLASS mixed-dtype grouped gemm.

  • a (torch.Tensor): The input tensor to the MoE layer. Shape: [M, K]
  • w1_q (torch.Tensor): The first set of fp8-quantized expert weights. Shape: [num_experts, 2*N, K // packed_factor]
  • w2_q (torch.Tensor): The second set of fp8-quantized expert weights. Shape: [num_experts, K, N // packed_factor]
  • topk_weights (torch.Tensor): The weights of each token->expert mapping.
  • topk_ids (torch.Tensor): The token->expert mappings.
  • a_strides1 (torch.Tensor): The input strides for the first gemm. Shape: [num_experts]
  • a_strides2 (torch.Tensor): The input strides for the second gemm. Shape: [num_experts]
  • b_strides1 (torch.Tensor): The packed layout for the first gemm weights. Shape: [num_experts, 3] dtype: torch.int32
  • b_strides2 (torch.Tensor): The packed layout for the second gemm weights. Shape: [num_experts, 3] dtype: torch.int32
  • c_strides1 (torch.Tensor): The output strides for the first gemm. Shape: [num_experts]
  • c_strides2 (torch.Tensor): The output strides for the second gemm. Shape: [num_experts]
  • s_strides1 (torch.Tensor): strides for the group-wise scales for the first gemm. Shape: [num_experts, 2] dtype: torch.int64
  • s_strides2 (torch.Tensor): strides for the group-wise scales for the second gemm. Shape: [num_experts, 2] dtype: torch.int64
  • per_act_token (Optional[bool]): Whether the scale is per-token or per-tensor.
  • activation (MoEActivation): The activation function to use.
  • expert_map (Optional[torch.Tensor]): In the case of Expert parallel, every Rank is responsible for a subset of experts. expert_map is a mapping from global expert-id to local expert-id. When expert_map[i] is -1, it means that this Rank is not responsible for global expert-id i.
  • apply_router_weight_on_input (bool): When true, the topk weights are applied directly on the inputs. This is only applicable when topk is 1.
  • global_num_experts (int): The total number of experts.
  • group_size (int): The number of weights per scale factor

Returns: - torch.Tensor: The bf16 output tensor after applying the MoE layer.

Source code in vllm/model_executor/layers/fused_moe/cutlass_moe.py
def cutlass_moe_w4a8_fp8(
    a: torch.Tensor,
    w1_q: torch.Tensor,
    w2_q: torch.Tensor,
    topk_weights: torch.Tensor,
    topk_ids: torch.Tensor,
    a_strides1: torch.Tensor,
    a_strides2: torch.Tensor,
    b_strides1: torch.Tensor,
    b_strides2: torch.Tensor,
    c_strides1: torch.Tensor,
    c_strides2: torch.Tensor,
    s_strides1: torch.Tensor,
    s_strides2: torch.Tensor,
    quant_config: FusedMoEQuantConfig,
    moe_config: FusedMoEConfig,
    activation: MoEActivation = MoEActivation.SILU,
    expert_map: torch.Tensor | None = None,
    apply_router_weight_on_input: bool = False,
    global_num_experts: int = -1,
    group_size: int = 128,
) -> torch.Tensor:
    """
    This function computes a w4a8-quantized Mixture of Experts (MoE) layer
    using two sets of quantized weights, w1_q and w2_q, and top-k gating
    mechanism. The matrix multiplications are implemented with CUTLASS
    mixed-dtype grouped gemm.

    Parameters:
    - a (torch.Tensor): The input tensor to the MoE layer.
        Shape: [M, K]
    - w1_q (torch.Tensor): The first set of fp8-quantized expert weights.
        Shape: [num_experts, 2*N, K // packed_factor]
    - w2_q (torch.Tensor): The second set of fp8-quantized expert weights.
        Shape: [num_experts, K, N // packed_factor]
    - topk_weights (torch.Tensor): The weights of each token->expert mapping.
    - topk_ids (torch.Tensor): The token->expert mappings.
    - a_strides1 (torch.Tensor): The input strides for the first gemm.
        Shape: [num_experts]
    - a_strides2 (torch.Tensor): The input strides for the second gemm.
        Shape: [num_experts]
    - b_strides1 (torch.Tensor): The packed layout for the first gemm weights.
        Shape: [num_experts, 3]
        dtype: torch.int32
    - b_strides2 (torch.Tensor): The packed layout for the second gemm weights.
        Shape: [num_experts, 3]
        dtype: torch.int32
    - c_strides1 (torch.Tensor): The output strides for the first gemm.
        Shape: [num_experts]
    - c_strides2 (torch.Tensor): The output strides for the second gemm.
        Shape: [num_experts]
    - s_strides1 (torch.Tensor): strides for the group-wise scales for the first gemm.
        Shape: [num_experts, 2]
        dtype: torch.int64
    - s_strides2 (torch.Tensor): strides for the group-wise scales for the second gemm.
        Shape: [num_experts, 2]
        dtype: torch.int64
    - per_act_token (Optional[bool]): Whether the scale is per-token or
                                      per-tensor.
    - activation (MoEActivation): The activation function to use.
    - expert_map (Optional[torch.Tensor]): In the case of Expert parallel,
        every Rank is responsible for a subset of experts. expert_map is a
        mapping from global expert-id to local expert-id. When expert_map[i]
        is -1, it means that this Rank is not responsible for global
        expert-id i.
    - apply_router_weight_on_input (bool): When true, the topk weights are
        applied directly on the inputs. This is only applicable when topk is 1.
    - global_num_experts (int): The total number of experts.
    - group_size (int): The number of weights per scale factor

    Returns:
    - torch.Tensor: The bf16 output tensor after applying the MoE layer.
    """
    assert quant_config is not None

    num_experts = global_num_experts if global_num_experts != -1 else w1_q.size(0)

    fn = mk.FusedMoEModularKernel(
        MoEPrepareAndFinalizeNoEP(),
        CutlassExpertsW4A8Fp8(
            out_dtype=a.dtype,
            a_strides1=a_strides1,
            a_strides2=a_strides2,
            b_strides1=b_strides1,
            b_strides2=b_strides2,
            c_strides1=c_strides1,
            c_strides2=c_strides2,
            s_strides1=s_strides1,
            s_strides2=s_strides2,
            moe_config=moe_config,
            quant_config=quant_config,
            group_size=group_size,
        ),
        inplace=False,
    )

    return fn(
        a,
        w1_q,
        w2_q,
        topk_weights,
        topk_ids,
        activation=activation,
        global_num_experts=num_experts,
        expert_map=expert_map,
        apply_router_weight_on_input=apply_router_weight_on_input,
    )

fused_experts

fused_experts(
    hidden_states: Tensor,
    w1: Tensor,
    w2: Tensor,
    topk_weights: Tensor,
    topk_ids: Tensor,
    inplace: bool = False,
    activation: MoEActivation = SILU,
    apply_router_weight_on_input: bool = False,
    global_num_experts: int = -1,
    expert_map: Tensor | None = None,
    quant_config: FusedMoEQuantConfig | None = None,
) -> Tensor

Run fused MoE expert computation using Triton kernels.

Source code in vllm/model_executor/layers/fused_moe/fused_moe.py
def fused_experts(
    hidden_states: torch.Tensor,
    w1: torch.Tensor,
    w2: torch.Tensor,
    topk_weights: torch.Tensor,
    topk_ids: torch.Tensor,
    inplace: bool = False,
    activation: MoEActivation = MoEActivation.SILU,
    apply_router_weight_on_input: bool = False,
    global_num_experts: int = -1,
    expert_map: torch.Tensor | None = None,
    quant_config: FusedMoEQuantConfig | None = None,
) -> torch.Tensor:
    """Run fused MoE expert computation using Triton kernels."""
    if quant_config is None:
        quant_config = FUSED_MOE_UNQUANTIZED_CONFIG

    assert not inplace or not disable_inplace()

    return dispatch_fused_experts_func(inplace)(
        hidden_states=hidden_states,
        w1=w1,
        w2=w2,
        topk_weights=topk_weights,
        topk_ids=topk_ids,
        activation=activation.value,
        apply_router_weight_on_input=apply_router_weight_on_input,
        use_fp8_w8a8=quant_config.use_fp8_w8a8,
        use_int8_w8a8=quant_config.use_int8_w8a8,
        use_int8_w8a16=quant_config.use_int8_w8a16,
        use_int4_w4a16=quant_config.use_int4_w4a16,
        ocp_mx_scheme=quant_config.ocp_mx_scheme,
        per_channel_quant=quant_config.per_act_token_quant,
        global_num_experts=global_num_experts,
        expert_map=expert_map,
        w1_scale=quant_config.w1_scale,
        w2_scale=quant_config.w2_scale,
        w1_zp=quant_config.w1_zp,
        w2_zp=quant_config.w2_zp,
        a1_scale=quant_config.a1_scale,
        a2_scale=quant_config.a2_scale,
        block_shape=quant_config.block_shape,
        w1_bias=quant_config.w1_bias,
        w2_bias=quant_config.w2_bias,
    )